Table of Contents

List of Figures ... xiii
Preface ... xxiii
Acknowledgments ... xxv

SECTION 1 EARNED VALUE PROJECT MANAGEMENT AND ORGANIZATION ... 29

Chapter 1 Project Management Using Earned Value ... 31
What is a Project? ... 31
Managing Projects .. 32
Background .. 33
The Performance-Oriented Approach 34
Summary Implementation Concerns 36
Factors Affecting System Implementation Detail 37
Earned Value Management System Recognition 38
The Earned Value Management Process 38
The Process Steps ... 38
Conclusion .. 42
Chapter 1 Review Questions ... 43

Chapter 2 Definition of Scope, Work Breakdown Structure (WBS) and WBS Dictionary 45
Defining Project Objectives ... 46
The Work Breakdown Structure (WBS) 47
Considerations in Developing a WBS 48
WBS Examples .. 48
WBS Dictionary ... 53
Other Considerations in WBS Development 54
The Contract Work Breakdown Structure (CWBS) 57
Scope Verification ... 57
Conclusion .. 58
Chapter 2 Review Questions ... 59
Case Study 2.1 Work Breakdown Structure Part 1 61
Case Study 2.2 Work Breakdown Structure Part 2 67
Case Study 2.3 WBS Element Description 71

Chapter 3 Managing Project Risks .. 77
Introduction to Managing Project Risks 77
The Process Flow Diagram .. 79
Relationship of Risk Management to the Earned Value Management System .. 85
 Development of Estimates ... 85
 Quantitative Schedule Risk Analysis 85
 Budgets ... 85
 Management Reserve ... 85
 Variance Analysis ... 86
 Estimates at Completion ... 86
Conclusion .. 86
Chapter 3 Review Questions ... 87
Case Study 3.1 Using the Risk Register 89
Section 2 Scheduling

Chapter 4 Relating Organizations, Responsibility, and Work Scope ... 91
Organizational Structures ... 92
Responsibility Assignment Matrix (RAM) ... 95
Control Account Establishment .. 97
Conclusion .. 100
Chapter 4 Review Questions .. 101
Case Study 4.1 Control Account Definition Part 1 ... 103
Case Study 4.2 Control Account Definition Part 2 ... 109

Chapter 5 Work Teams ... 111
The Work Team ... 111
Advantages of Work Teams .. 113
The Work Team Lead ... 119
Conclusion .. 119
Chapter 5 Review Questions .. 120
Case Study 5.1 Organization Chart and Responsibility Assignment Matrix ... 121
Case Study Section 1 Quiz .. 127

Chapter 6 What is Scheduling? Schedule Types .. 139
Project Scheduling ... 139
What is a Schedule and Why Use One? ... 141
Data Requirements ... 142
Data Processing .. 142
Using Results .. 143
Schedule Types .. 143
Gantt Charts .. 144
Milestone Chart .. 144
Bar Chart .. 145
Combination Chart .. 145
Modified Gantt/Milestone Chart .. 146
Flow Process Chart .. 146
Set Back Chart .. 146
Line of Balance .. 147
Network Diagrams ... 147
Conclusion .. 148
Chapter 6 Review Questions .. 150
Case Study 6.1 Developing a Personal Schedule ... 153

Chapter 7 Introduction to Network Logic Development ... 157
Precedence Diagramming Method .. 157
Activity Relationships ... 159
Representations of Logic in Time-Phased Formats ... 161
Conclusion .. 163
Chapter 7 Review Questions .. 164
Case Study 7.1 Constructing a Network Diagram ... 165

Chapter 8 Critical Path Method Fundamentals ... 167
The Critical Path Method ... 169
Critical Path Example ... 169
Network Calculations ... 170
Chapter 11 Schedule Acceleration Techniques .. 243
 The “Crashing” Procedure ... 245
Table of Contents

An Example of Network Crashing ... 245
Other Schedule Acceleration Techniques 252
Conclusion ... 253
Chapter 11 Review Questions .. 254
Case Study 11.1 Crashing the Network or “What If” 255

Chapter 12 Setting a Traceable Schedule Baseline .. 257
Schedule Traceability .. 259
A Solution ... 260
Defining the Schedule Baseline .. 261
Schedule Baseline Establishment ... 262
Realism and Schedule Detail ... 264
Timing of Schedule Baseline Establishment 265
Schedule Baseline Revisions .. 266
The Baseline Schedule Versus the Current Schedule 267
Conclusion ... 267
Chapter 12 Review Questions .. 269
Case Study 12.1 Vertical and Horizontal Schedule Traceability 271

Chapter 13 Updating the Schedule .. 275
Successful Schedule Update Process .. 279
Additional Statusing Considerations ... 280
Methods for Addressing Out-Of-Sequence Logic Status 280
 Retained Logic .. 280
 Progress Override ... 283
 Impact on Total Float ... 284
Conclusion ... 286
Chapter 13 Review Questions .. 287
Case Study 13.1 Analyzing the Schedule 289

Chapter 14 Schedule Changes ... 291
Duration Changes .. 293
Measuring Schedule Status .. 294
Defining Significant Changes ... 294
Recording the Changes .. 294
Work-Around Plans .. 295
Baseline Changes ... 296
Conclusion ... 296
Chapter 14 Review Questions .. 297
Case Study 14.1 Analyzing Schedule Changes 299

Chapter 15 Resolving Negative Float ... 303
Float Analysis at Status Update .. 303
Isolating the Cause of Float Deterioration 306
Impact of the Delay .. 308
Resolution Alternatives for Negative Float 308
Float Analysis by Project Team .. 310
Conclusion ... 311
Chapter 15 Review Questions .. 313
Case Study 15.1 Resolving Negative Float 315
Chapter 16 Special Networking Considerations

- Directed Dates ... 317
- Secondary Float .. 317
- Parallel SS/FF Relationships 326
- Level of Effort ... 328
- Calendar Considerations 329
- Conclusion ... 331
- Chapter 16 Review Questions 331
- Case Study 16.1 A More Complex Network 333

Chapter 17 Schedule Risk Assessment

- Reasons for Risk Analysis 338
- Risk Definition and Use of a Risk Assessment 339
- The CPM Approach to Schedule Risk 340
- Probabilistic Approach to Schedule Risk 340
- Example: Building Foundation Activity 341
- Example: CPM Path Duration 342
- Risk Analysis of Path Duration 342
- Cumulative Likelihood Curves (S-Curves) 343
- Validity of the CPM Completion Estimates 345
- Highest Risk Path .. 345
- Schedule Risk at Path Convergence 346
- Schedule Bias ... 346
- Merge Bias at Path Convergence 347
- Directed Dates ... 348
- Reducing Durations to Fit the Schedule 348
- Fast Track Impacts 348
- Late Start Scheduling 349
- Early Start Scheduling 349
- Risk Analysis Pitfalls 349
- Risk Implementation 350
- Schedule Risk Analysis Output 351
- Cost Risk Analysis Output 351
- Other Scheduling Issues 351
- Risk Assessment Tools 352
 - PERT .. 352
 - Monte Carlo Approach 355
- Cost Effective Implementation 355
- Conclusion ... 356
- Chapter 17 Review Questions 357
- Case Study 17.1 Making Activity Duration Distributions 359
- Case Study 17.2 Combining Distributions Along a Path 361
- Case Study 17.3 Schedule EAC and Path Convergence 367

Chapter 18 Scheduling in a Performance Measurement Environment

- System Description 373
- Schedule Traceability 373
- Reconciliation to Time-Phased Budgets 375
- Reconciliation of Progress and Performance 375
- Contract Requirements 376
- Special Requirements 378
- Conclusion ... 379
- Chapter 18 Review Questions 380
Table of Contents

Section 3 Estimating

Chapter 19 The Estimating Process
- Impact of the Estimate .. 399
- Impacts of Poor Estimating ... 399
- Prerequisites for Estimate Development 400
 - Guidelines ... 400
 - Work Breakdown Structure (WBS) 401
 - Templates ... 401
 - WBS Dictionary and Code of Accounts 402
- Estimate Formats/Templates ... 402
- Conclusion ... 403
- Chapter 19 Review Questions .. 404

Chapter 20 Types of Estimates
- Conceptual Estimates .. 407
- Preliminary Estimates .. 407
- Detailed Estimates ... 408
- Definitive Estimate .. 408
- Impact of “Fast Track” Projects on Estimating 409
- Conclusion ... 409
- Chapter 20 Review Questions .. 410

Chapter 21 Estimate Development
- The Estimating Process .. 411
- Estimating Methods ... 416
- Inputs for Estimate Development 416
- Sources of Estimate Inputs ... 417
- The Use of Defaults in Estimate Preparation 417
- Estimating Guidelines ... 418
- Level of Estimate Detail .. 420
- Calculation of Indirect Costs .. 421
- Developing a Cost Flow .. 421
- Use of Other Escalation Factors 424
- Estimating Operating and Manufacturing Costs 425
- Software Estimating ... 426
- Conclusion ... 427
- Chapter 21 Review Questions .. 428
- Case Study 21.1 Developing an Estimate 429
- Case Study 21.2 Estimate Modification 431

Chapter 22 Learning Curves
- Unit Learning Curve .. 437
- Cumulative Average Learning Curve 437
- The Difference between Unit Linear and Cumulative Average Linear .. 437
- Determining the Learning Curve to Use 438
- Typical Learning Curve Values .. 439
- Impacts to Learning Curves .. 439
- Conclusion ... 440
- Chapter 22 Review Questions .. 441

Case Study 18.1 Schedule Traceability 381
Case Study Section 2 Quiz .. 385

Case Study 21.2 Estimate Modification 435
<table>
<thead>
<tr>
<th>Chapter 23 Cost Risk Assessment</th>
<th>445</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Model Definition</td>
<td>445</td>
</tr>
<tr>
<td>Risk Analysis Sampling Techniques</td>
<td>447</td>
</tr>
<tr>
<td>Probability Distributions</td>
<td>447</td>
</tr>
<tr>
<td>Risk Assessment Outputs</td>
<td>448</td>
</tr>
<tr>
<td>Risk Assessment Output Statistics</td>
<td>449</td>
</tr>
<tr>
<td>Conducting a Risk Assessment</td>
<td>452</td>
</tr>
<tr>
<td>Implementation Examples</td>
<td>453</td>
</tr>
<tr>
<td>Conclusion</td>
<td>453</td>
</tr>
<tr>
<td>Chapter 23 Review Questions</td>
<td>454</td>
</tr>
<tr>
<td>Case Study 22.1 Estimating Cost Savings</td>
<td>443</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 24 Estimate Review</th>
<th>455</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Reviews</td>
<td>457</td>
</tr>
<tr>
<td>Other Factors in Estimate Reviews</td>
<td>458</td>
</tr>
<tr>
<td>Team Reviews</td>
<td>458</td>
</tr>
<tr>
<td>Conclusion</td>
<td>459</td>
</tr>
<tr>
<td>Chapter 24 Review Questions</td>
<td>460</td>
</tr>
<tr>
<td>Case Study 24.1 Assessing the Estimate</td>
<td>461</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 25 Tracking the Estimate</th>
<th>463</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate Traceability: Tracking the Estimate</td>
<td>463</td>
</tr>
<tr>
<td>Conclusion</td>
<td>469</td>
</tr>
<tr>
<td>Chapter 25 Review Questions</td>
<td>470</td>
</tr>
<tr>
<td>Case Study 25.1 Estimate History</td>
<td>471</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 26 Automating the Estimating Function</th>
<th>475</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Evaluation Considerations</td>
<td>477</td>
</tr>
<tr>
<td>Implementation Concerns</td>
<td>479</td>
</tr>
<tr>
<td>Conclusion</td>
<td>479</td>
</tr>
<tr>
<td>Chapter 26 Review Questions</td>
<td>480</td>
</tr>
<tr>
<td>Case Study Section 3 Quiz</td>
<td>481</td>
</tr>
</tbody>
</table>

| CASE STUDY 22.1 Estimating Cost Savings | 443 |

<table>
<thead>
<tr>
<th>SECTION 4 EARNED VALUE</th>
<th>487</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 27 Earned Value</td>
<td>489</td>
</tr>
<tr>
<td>The Concept</td>
<td>491</td>
</tr>
<tr>
<td>The Earned Value Process</td>
<td>494</td>
</tr>
<tr>
<td>The Value of Earned Value</td>
<td>495</td>
</tr>
<tr>
<td>Conclusion</td>
<td>495</td>
</tr>
<tr>
<td>Chapter 27 Review Questions</td>
<td>496</td>
</tr>
<tr>
<td>Case Study 27.1 The Importance of Earned Value</td>
<td>497</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 28 The Brick Wall</th>
<th>499</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Brick Wall Example</td>
<td>499</td>
</tr>
<tr>
<td>Earned Value Brick Wall</td>
<td>501</td>
</tr>
<tr>
<td>Conclusion</td>
<td>505</td>
</tr>
<tr>
<td>Chapter 28 Review Questions</td>
<td>506</td>
</tr>
<tr>
<td>Case Study 28.1 The Brick Wall</td>
<td>507</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 29 Measuring Accomplishment</th>
<th>509</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Packages</td>
<td>509</td>
</tr>
<tr>
<td>Chapter 30 Establishing the Performance Measurement Baseline</td>
<td>531</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>Performance Measurement Baseline Development</td>
<td>531</td>
</tr>
<tr>
<td>Rolling Wave Planning</td>
<td>533</td>
</tr>
<tr>
<td>Performance Measurement Baseline Structure</td>
<td>535</td>
</tr>
<tr>
<td>Timing of the Baseline Establishment</td>
<td>537</td>
</tr>
<tr>
<td>Work Authorization</td>
<td>538</td>
</tr>
<tr>
<td>Control Account Plan and Baseline Traceability</td>
<td>540</td>
</tr>
<tr>
<td>Conclusion</td>
<td>541</td>
</tr>
<tr>
<td>Chapter 30 Review Questions</td>
<td>542</td>
</tr>
<tr>
<td>Case Study 30.1 Control Account Plan Exercise 2</td>
<td>543</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 31 Collecting Actual Cost</th>
<th>545</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Cost Components</td>
<td>545</td>
</tr>
<tr>
<td>Data Element Sources</td>
<td>547</td>
</tr>
<tr>
<td>Accounting Interface with Project Management</td>
<td>548</td>
</tr>
<tr>
<td>Cash Flow Considerations</td>
<td>550</td>
</tr>
<tr>
<td>Material Costs</td>
<td>550</td>
</tr>
<tr>
<td>Indirect Costs</td>
<td>551</td>
</tr>
<tr>
<td>Late Reporting of Actual Costs</td>
<td>553</td>
</tr>
<tr>
<td>Accuracy of Reported Actual Costs</td>
<td>554</td>
</tr>
<tr>
<td>Estimated ACWP</td>
<td>555</td>
</tr>
<tr>
<td>Reporting Labor Hours versus Labor Dollars</td>
<td>556</td>
</tr>
<tr>
<td>Conclusion</td>
<td>557</td>
</tr>
<tr>
<td>Chapter 31 Review Questions</td>
<td>558</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 32 Performance Measurement Calculations and Estimates at Completion</th>
<th>559</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Measurement Calculations</td>
<td>559</td>
</tr>
<tr>
<td>Developing the Estimate at Completion (EAC)</td>
<td>562</td>
</tr>
<tr>
<td>Performance Indices</td>
<td>564</td>
</tr>
<tr>
<td>Cost Performance Index (CPI)</td>
<td>564</td>
</tr>
<tr>
<td>Schedule Performance Index (SPI)</td>
<td>565</td>
</tr>
<tr>
<td>To Complete Performance Index (TCPI)</td>
<td>565</td>
</tr>
<tr>
<td>Independent Estimates at Completion (IEAC)</td>
<td>565</td>
</tr>
<tr>
<td>Preparing a Range of Estimates at Completion</td>
<td>568</td>
</tr>
<tr>
<td>Percent Complete</td>
<td>568</td>
</tr>
<tr>
<td>Estimated Completion Date (ECD)</td>
<td>568</td>
</tr>
</tbody>
</table>

Typical Work Packages ... 511

Discrete Effort ... 511

Milestone Definition .. 511

Incremental Milestone Technique .. 514

50/50 Technique ... 515

0/100 Technique ... 516

Units Complete Technique ... 516

Equivalent Units Technique ... 518

Percent Complete Technique .. 520

Apportioned Effort ... 521

Level of Effort ... 522

Other Earned Value Techniques .. 523

When is Earned Value Credited? ... 523

Other Comments ... 524

Conclusion ... 524

Chapter 29 Review Questions .. 525

Case Study 29.1 Control Account Plan Exercise 1 527

Chapter 30 Establishing the Performance Measurement Baseline 531

Performance Measurement Baseline Development 531

Rolling Wave Planning .. 533

Performance Measurement Baseline Structure 535

Timing of the Baseline Establishment ... 537

Work Authorization ... 538

Control Account Plan and Baseline Traceability 540

Conclusion ... 541

Chapter 30 Review Questions .. 542

Case Study 30.1 Control Account Plan Exercise 2 543

Chapter 31 Collecting Actual Cost ... 545

Actual Cost Components .. 545

Data Element Sources .. 547

Accounting Interface with Project Management 548

Cash Flow Considerations .. 550

Material Costs ... 550

Indirect Costs ... 551

Late Reporting of Actual Costs ... 553

Accuracy of Reported Actual Costs .. 554

Estimated ACWP ... 555

Reporting Labor Hours versus Labor Dollars 556

Conclusion ... 557

Chapter 31 Review Questions .. 558

Chapter 32 Performance Measurement Calculations and Estimates at Completion ... 559

Performance Measurement Calculations .. 559

Developing the Estimate at Completion (EAC) 562

Performance Indices ... 564

Cost Performance Index (CPI) .. 564

Schedule Performance Index (SPI) .. 565

To Complete Performance Index (TCPI) .. 565

Independent Estimates at Completion (IEAC) 565

Preparing a Range of Estimates at Completion 568

Percent Complete ... 568

Estimated Completion Date (ECD) .. 568
<table>
<thead>
<tr>
<th>Chapter 33 Variance Analysis and Corrective Action</th>
<th>587</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance Analysis</td>
<td>587</td>
</tr>
<tr>
<td>Variance Thresholds</td>
<td>588</td>
</tr>
<tr>
<td>Variance Analysis Reports</td>
<td>591</td>
</tr>
<tr>
<td>Heading Information/Earned Value Data</td>
<td>591</td>
</tr>
<tr>
<td>Problem Analysis</td>
<td>592</td>
</tr>
<tr>
<td>Impact</td>
<td>593</td>
</tr>
<tr>
<td>Corrective Action Plan</td>
<td>593</td>
</tr>
<tr>
<td>Estimate at Completion Justification</td>
<td>594</td>
</tr>
<tr>
<td>Approvals</td>
<td>594</td>
</tr>
<tr>
<td>Conclusion</td>
<td>594</td>
</tr>
<tr>
<td>Chapter 33 Review Questions</td>
<td>595</td>
</tr>
<tr>
<td>Case Study 33.1 Calculation of Cost and Schedule Variances</td>
<td>597</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 34 Baseline Revisions and Change Control</th>
<th>599</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Control</td>
<td>599</td>
</tr>
<tr>
<td>Types and Causes of Changes</td>
<td>599</td>
</tr>
<tr>
<td>Elements of a Change Control Program</td>
<td>601</td>
</tr>
<tr>
<td>How to Control Changes</td>
<td>601</td>
</tr>
<tr>
<td>Change Control and the Baseline</td>
<td>602</td>
</tr>
<tr>
<td>Baseline Changes at the Control Account Level</td>
<td>603</td>
</tr>
<tr>
<td>Incorporating Changes into the PMB</td>
<td>604</td>
</tr>
<tr>
<td>Detailed Tracking of Changes</td>
<td>605</td>
</tr>
<tr>
<td>Authorized Unpriced Work</td>
<td>607</td>
</tr>
<tr>
<td>Internal Replanning</td>
<td>609</td>
</tr>
<tr>
<td>Stop Work Orders</td>
<td>609</td>
</tr>
<tr>
<td>Rubber Baseline</td>
<td>610</td>
</tr>
<tr>
<td>Conclusion</td>
<td>610</td>
</tr>
<tr>
<td>Chapter 34 Review Questions</td>
<td>612</td>
</tr>
<tr>
<td>Case Study 34.1 Contract Budget Base Log</td>
<td>613</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 35 Subcontract Management</th>
<th>619</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of Subcontracts</td>
<td>619</td>
</tr>
<tr>
<td>Subcontract Flowdown Requirements</td>
<td>620</td>
</tr>
<tr>
<td>Subcontract Requests for Proposals</td>
<td>621</td>
</tr>
<tr>
<td>Subcontract Type</td>
<td>622</td>
</tr>
<tr>
<td>Subcontractor Reporting Requirements</td>
<td>623</td>
</tr>
<tr>
<td>Integrating the Subcontractor WBS</td>
<td>623</td>
</tr>
<tr>
<td>Integrating the Schedule</td>
<td>624</td>
</tr>
</tbody>
</table>
Post Award Baseline Establishment .. 625
Establishing the Schedule Baseline .. 625
Establishing the Budget Baseline .. 625
Prime Contractor Considerations for Subcontracts without EVMSG Requirements .. 628
 Cost Reimbursable .. 628
 Firm Fixed Price (FFP) ... 629
 Time and Materials (T&M) .. 629
 Technical Services .. 629
Additional Considerations When Planning Subcontract Budgets 630
Factoring Subcontract Budgets ... 630
Special Organizational Situations ... 631
 Inter-Divisional Work Authorization (IDWA) 631
 Badgeless Organizations ... 631
Revisions .. 633
 Directed Changes .. 633
 Internal Replanning ... 634
 Formal Reprogramming .. 635
Subcontract Data Analysis ... 636
Subcontract EVMS Reviews and Surveillance 636
 EVMS Guideline Compliance with Validation 636
 EVMS Guideline Compliance without Validation 637
 EV Reporting without EVMS Guideline Compliance 637
Conclusion .. 638
Chapter 35 Review Questions .. 639
Case Study Section 4 Quiz ... 641

SECTION 5 IMPLEMENTATION OF THE PROJECT MANAGEMENT PROCESS .. 651

Chapter 36 Implementation of the Project Management Process .. 653
 Background .. 653
 System Design .. 654
 System Description .. 656
 The Creation of Storyboards .. 658
 Identification of Areas Needing Improvement 660
 Hardware and Software Selection .. 660
 Development of Procedures and Training Material 660
 System Start-up .. 661
 Changes to System Operation .. 661
 Routine Operation ... 661
 Implementation Schedules ... 661
 Tailoring the System for Project Unique Requirements 662
 Conclusion ... 663
 Chapter 36 Review Questions .. 664

SECTION 6 CONCLUSION, SOLUTIONS, AND REFERENCES .. 667
 Solutions .. 669
 Earned Value Analysis Formulas ... 729
 Abbreviations .. 733
 Glossary .. 737
 Bibliography .. 753
 Index ... 755
 About the Author .. 763
List of Figures

Chapter 1 Project Management Using Earned Value
- Figure 1-1 Shocking Surprises ... 34
- Figure 1-2 Budget Plan vs. Actual Cost ... 35
- Figure 1-3 Overrun or Ahead of Schedule? .. 35
- Figure 1-4 Underrun or Behind Schedule? ... 35
- Figure 1-5 Significant Overrun or Accelerated Schedule? 35
- Figure 1-6 A Performance Oriented Approach Provides Better Visibility 36
- Figure 1-7 Cost and Schedule Impacts ... 36
- Figure 1-8 Earned Value Project Management: The Process 39

Chapter 2 Definition of Scope, Work Breakdown Structure (WBS) and WBS Dictionary
- Figure 2-1 Earned Value Project Management: The Process 46
- Figure 2-2 600 Megawatt WBS .. 48
- Figure 2-3 Boiler Plant Equipment WBS .. 49
- Figure 2-4 Coal Handling System WBS .. 49
- Figure 2-5 Storage and Preparation WBS ... 49
- Figure 2-6 Sewer Treatment Plant WBS ... 50
- Figure 2-7 Floor Covering WBS ... 50
- Figure 2-8 Consulting WBS ... 51
- Figure 2-9 DOE Project Summary WBS .. 51
- Figure 2-10 Sample Project WBS Software Development Project 52
- Figure 2-11 Sample Project WBS Software Development Project details 52
- Figure 2-12 Sample Project WBS .. 53
- Figure 2-13 CWBS Dictionary and Contract .. 54
- Figure 2-14 Element of Cost Orientation ... 55
- Figure 2-15 Phase Orientation ... 55
- Figure 2-16 Engineering/Design WBS ... 56
- Figure 2-17 Engineering/Design WBS ... 56
- Figure 2-18 Product - User Mapping .. 57

Chapter 3 Managing Project Risks
- Figure 3-1 Earned Value Project Management: The Process 78
- Figure 3-2 Managing Project Risks: The Process 79
- Figure 3-3 Sample Risk Register ... 81
- Figure 3-4 Widget Project Risk Register ... 83

Chapter 4 Relating Organizations, Responsibility, and Work Scope
- Figure 4-1 Earned Value Project Management: The Process 92
- Figure 4-2 Functional Organization .. 93
- Figure 4-3 Project Organization ... 93
- Figure 4-4 Weak Matrix ... 93
- Figure 4-5 Strong Matrix ... 93
- Figure 4-6 Balanced Matrix .. 94
- Figure 4-7 Composite Organization .. 95
- Figure 4-8 Responsibility Assignment Matrix (RAM) 96
- Figure 4-9 Responsibility Assignment Matrix and Control Account Structure ... 97
- Figure 4-10 Control Account Example 1 ... 98
- Figure 4-11 Control Account Example 2 ... 99
- Figure 4-12 Control Account Example 3 ... 99
- Figure 4-13 Control Account Example 4 ... 99
List of Figures

Chapter 5 Work Teams
Figure 5-1 Earned Value Project Management: The Process ... 112
Figure 5-2 Typical Responsibility Matrix - Functional Alignment ... 115
Figure 5-3 Potential Work Team Alignment - 1 ... 115
Figure 5-4 Potential Work Team Alignment - 2 ... 116
Figure 5-5 Potential Work Team Alignment - 3 ... 117
Figure 5-6 Work Team Application - Example 1 ... 117
Figure 5-7 Work Team Application - Example 2 ... 118
Figure 5-8 Work Team Application - Example 3 ... 118

Chapter 6 What is Scheduling? Schedule Types
Figure 6-1 Earned Value Project Management: The Process ... 140
Figure 6-2 Planning and Scheduling ... 140
Figure 6-3 Gantt Chart ... 144
Figure 6-4 Milestone Chart ... 144
Figure 6-5 Bar Chart ... 145
Figure 6-6 Combination Chart ... 145
Figure 6-7 Modified Bar/Milestone Chart ... 146
Figure 6-8 Process Flowchart ... 146
Figure 6-9 Set Back Chart ... 146
Figure 6-10 Line of Balance Chart ... 147
Figure 6-11 Network Diagrams ... 148

Chapter 7 Introduction to Network Logic Development
Figure 7-1 Earned Value Project Management: The Process ... 158
Figure 7-2 Planning and Scheduling ... 158
Figure 7-3 PDM Networks ... 159
Figure 7-4 Finish to Start ... 159
Figure 7-5 Finish to Finish ... 159
Figure 7-6 Start to Start ... 160
Figure 7-7 Start to Finish ... 161
Figure 7-8 Time-Phased Diagrams - Variable Box Length ... 162
Figure 7-9 Time Phased Bar Chart ... 162

Chapter 8 Critical Path Method Fundamentals
Figure 8-1 Earned Value Project Management: The Process ... 168
Figure 8-2 Planning and Scheduling ... 168
Figure 8-3 Critical Path ... 169
Figure 8-4 Standard Notation ... 170
Figure 8-5 Forward Pass (Activity Early Dates) ... 171
Figure 8-6 Forward Pass (Activity Relationship Early Dates) 171
Figure 8-7 Forward Pass (Early Dates - Converging Paths) 171
Figure 8-8 Forward Pass ... 171
Figure 8-9 Backward Pass (Activity Late Dates) ... 172
Figure 8-10 Backward Pass (Activity Relationship Late Dates) 172
Figure 8-11 Backward Pass (Late Dates - Converging Paths) 172
Figure 8-12 Backward Pass ... 173
Figure 8-13 Early, Late Dates and Total Float - the Critical Path 173
Figure 8-14 Free Float Calculation ... 174
Figure 8-15 Total and Free Float ... 175
Figure 8-16 Impact of Directed Finish Date - Negative Float 176
Figure 8-17 Impact of Directed Finish Date - Positive Float 177

Chapter 9 Resource Loading and Leveling the Schedule
Figure 9-1 Earned Value Project Management: The Process ... 196
Chapter 10 Considerations for Developing a Useful, Quality Network Schedule

Figure 10-1 Earned Value Project Management: The Process .. 210
Figure 10-2 Planning and Scheduling .. 210
Figure 10-3 Top Level Schedule - Contractual Milestones .. 211
Figure 10-4 “Unit A” Top Level Schedule .. 211
Figure 10-5 “Unit A” Widgets 1 and 2 Engineering Schedule .. 212
Figure 10-6 “Unit A” Widget 1 Engineering Schedule .. 212
Figure 10-7 Integrated Master Plan for the Widget Project ... 213
Figure 10-8 Coding Relationship Between WBS, IMP, IMS .. 214
Figure 10-9 Hammock .. 215
Figure 10-10 Summaries Using Code Fields ... 215
Figure 10-11 Grouping Facility Showing Total Float by CAM .. 216
Figure 10-12 Templates ... 217
Figure 10-13 Legend for the Examples .. 219
Figure 10-14 Finish to Start with Lag .. 219
Figure 10-15 Start to Start with Lag ... 219
Figure 10-16 Finish to Finish with Lag .. 219
Figure 10-17 Parallel Start to Start and Finish to Finish Relationships with Lags 220
Figure 10-18 CPM Calculations - Start to Start Relationship .. 220
Figure 10-19 CPM Calculations - Finish to Finish Relationship ... 220
Figure 10-20 CPM Calculations - Activity B Date Possibilities .. 220
Figure 10-21 CPM Calculations - Activity B Dates ... 221
Figure 10-22 CPM Calculations - Effective Duration for Activity B 221
Figure 10-23 Schedule Margin Using Buffer Activity ... 223
Figure 10-24 Qualitative Selection Criteria for Schedule Detail ... 226
Figure 10-25 Missing Logic - Goal: 5% or Less .. 228
Figure 10-26 Leads - Goal: 0% .. 228
Figure 10-27 Lags - Goal: 5% or Less .. 229
Figure 10-28 Relationship Goals .. 229
Figure 10-29 Hard Constraints - Goal: 5% or Less ... 230
Figure 10-30 High Total Float of 44 Working Days or More - Goal: 5% or less 230
Figure 10-31 Negative Float - Goal: 5% or Less .. 230
Figure 10-32 Durations Greater than 44 Working Days - Goal: 5% or less 231
Figure 10-33 Invalid Dates - Goal: 0% .. 231
Figure 10-34 Missing Resources on Activities with Durations of 1 Day or More - Goal: 0% 231
Figure 10-35 Missed Activities - Goal: < 5% .. 232
Figure 10-36 Critical Path Test, Before and After ... 232
Figure 10-37 CPM/L Graphic Highlighting the .95 Threshold ... 233
Figure 10-38 Baseline Execution Index .. 233
Figure 10-39 Health Check/GASP Correlation ... 234

Chapter 11 Schedule Acceleration Techniques

Figure 11-1 Earned Value Project Management: The Process .. 244
Figure 11-2 Planning and Scheduling .. 244
Figure 11-3 Activity “Crashing” Concept .. 245
Figure 11-4 “Crashing” a Network - An Example ... 246
Figure 11-5 Step 1 and Step 2 - “6 Weeks” .. 246
Chapter 12 Setting a Traceable Schedule Baseline

- Figure 12-1 Earned Value Project Management: The Process ... 258
- Figure 12-2 Planning and Scheduling ... 258
- Figure 12-3 Horizontal Traceability Between Same Level of Detail 259
- Figure 12-4 Vertical Traceability Between Different Levels of Detail 259
- Figure 12-5 Milestones ... 260
- Figure 12-6 Vertical Traceability Coding Schema ... 261
- Figure 12-7 Baseline Change Request ... 262

Chapter 13 Updating the Schedule

- Figure 13-1 Earned Value Project Management: The Process ... 276
- Figure 13-2 Planning and Scheduling ... 276
- Figure 13-3 Calendar ... 277
- Figure 13-4 Impact of Status on Duration and Float ... 279
- Figure 13-5 PDM Network ... 281
- Figure 13-6 Schedule Bar Chart ... 281
- Figure 13-7 Out-of-Sequence Progress - Retained Logic Option (PDM Network) 282
- Figure 13-8 Out-of-Sequence Progress - Retained Logic Option (Bar Chart) 282
- Figure 13-9 Out-of-Sequence Progress - Progress Override Option (PDM Network) 283
- Figure 13-10 Out of Sequence Progress - Progress Override Option (Bar Chart) 284
- Figure 13-11 Impact on Total Float - Sample Network .. 285
- Figure 13-12 Impact on Total Float - Retain Logic Option ... 285
- Figure 13-13 Impact on Total Float - Progress Override Option ... 286

Chapter 14 Schedule Changes

- Figure 14-1 Earned Value Project Management: The Process ... 292
- Figure 14-2 Planning and Scheduling ... 292

Chapter 15 Resolving Negative Float

- Figure 15-1 Earned Value Project Management: The Process ... 304
- Figure 15-2 Planning and Scheduling ... 304
- Figure 15-3 Trend in Float by Path ... 305
- Figure 15-4 Baseline vs. Current - Date and Duration Variances 306
- Figure 15-5 Resolution Alternatives ... 309
- Figure 15-6 Analysis - Most Critical Activities ... 310
- Figure 15-7 Analysis - Number of Critical Activities ... 311
- Figure 15-8 Analysis - Number of Activities On or Behind Schedule 311

Chapter 16 Special Networking Considerations

- Figure 16-1 Earned Value Project Management: The Process ... 318
- Figure 16-2 Planning and Scheduling ... 318
- Figure 16-3 Start Not Earlier Than Constraint .. 320
- Figure 16-4 Delayed Activity Using a Milestone ... 320
<table>
<thead>
<tr>
<th>Figure 16-5</th>
<th>Start Not Earlier Than Constraint Bypassed</th>
<th>320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 16-6</td>
<td>Delay Using a Schedule Visibility Task</td>
<td>320</td>
</tr>
<tr>
<td>Figure 16-7</td>
<td>Small Project Bar Chart</td>
<td>321</td>
</tr>
<tr>
<td>Figure 16-8</td>
<td>Start Not Earlier Than Constraint</td>
<td>322</td>
</tr>
<tr>
<td>Figure 16-9</td>
<td>Finish Not Later Than Constraint</td>
<td>322</td>
</tr>
<tr>
<td>Figure 16-10</td>
<td>Must Start On Constraint</td>
<td>323</td>
</tr>
<tr>
<td>Figure 16-11</td>
<td>Must Finish On Constraint</td>
<td>323</td>
</tr>
<tr>
<td>Figure 16-12</td>
<td>Finish Date Constrained Network - Imposed Date Earlier Than Calculated Date</td>
<td>324</td>
</tr>
<tr>
<td>Figure 16-13</td>
<td>Constraint Date Spectrum</td>
<td>325</td>
</tr>
<tr>
<td>Figure 16-14</td>
<td>Sample Network - Total Float Calculations</td>
<td>326</td>
</tr>
<tr>
<td>Figure 16-15</td>
<td>Comparing Total and Secondary Float</td>
<td>327</td>
</tr>
<tr>
<td>Figure 16-16</td>
<td>Total Float vs. Secondary Float</td>
<td>327</td>
</tr>
<tr>
<td>Figure 16-17</td>
<td>Parallel, SS/FF Relationships 1</td>
<td>328</td>
</tr>
<tr>
<td>Figure 16-18</td>
<td>Parallel, SS/FF Relationships 2</td>
<td>328</td>
</tr>
<tr>
<td>Figure 16-19</td>
<td>Parallel, SS/FF Relationships 3</td>
<td>329</td>
</tr>
<tr>
<td>Figure 16-20</td>
<td>Parallel, SS/FF Relationships 4</td>
<td>329</td>
</tr>
<tr>
<td>Figure 16-21</td>
<td>LOE Example</td>
<td>330</td>
</tr>
<tr>
<td>Figure 16-22</td>
<td>Alternate LOE Solution</td>
<td>330</td>
</tr>
</tbody>
</table>

Chapter 17 Schedule Risk Assessment

<table>
<thead>
<tr>
<th>Figure 17-1</th>
<th>Earned Value Project Management: The Process</th>
<th>336</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 17-2</td>
<td>Planning and Scheduling</td>
<td>336</td>
</tr>
<tr>
<td>Figure 17-3</td>
<td>Risk Assessment with CPM</td>
<td>337</td>
</tr>
<tr>
<td>Figure 17-4</td>
<td>Risk Assessment with CPM Network</td>
<td>337</td>
</tr>
<tr>
<td>Figure 17-5</td>
<td>Risk Analysis of the Project</td>
<td>338</td>
</tr>
<tr>
<td>Figure 17-6</td>
<td>Building Foundation Activity</td>
<td>341</td>
</tr>
<tr>
<td>Figure 17-7</td>
<td>Most Likely and Average Durations</td>
<td>341</td>
</tr>
<tr>
<td>Figure 17-8</td>
<td>Low and High Possible Durations</td>
<td>342</td>
</tr>
<tr>
<td>Figure 17-9</td>
<td>Risk Analysis of Path Duration Example</td>
<td>343</td>
</tr>
<tr>
<td>Figure 17-10</td>
<td>Constructing the S-Curve</td>
<td>344</td>
</tr>
<tr>
<td>Figure 17-11</td>
<td>Likelihood of Slippages and Contingencies</td>
<td>344</td>
</tr>
<tr>
<td>Figure 17-12</td>
<td>Cumulative Distribution for Path A</td>
<td>345</td>
</tr>
<tr>
<td>Figure 17-13</td>
<td>Validity of CPM Estimates</td>
<td>345</td>
</tr>
<tr>
<td>Figure 17-14</td>
<td>Identifying the Highest Risk Path</td>
<td>346</td>
</tr>
<tr>
<td>Figure 17-15</td>
<td>Identify the Highest Risk Path</td>
<td>346</td>
</tr>
<tr>
<td>Figure 17-16</td>
<td>Merge Bias at Convergence</td>
<td>347</td>
</tr>
<tr>
<td>Figure 17-17</td>
<td>Direct Dates</td>
<td>348</td>
</tr>
<tr>
<td>Figure 17-18</td>
<td>Reducing Durations to Fit the Schedule</td>
<td>348</td>
</tr>
<tr>
<td>Figure 17-19</td>
<td>Two Path Example</td>
<td>349</td>
</tr>
<tr>
<td>Figure 17-20</td>
<td>Late Starts on Path B</td>
<td>349</td>
</tr>
<tr>
<td>Figure 17-21</td>
<td>Early Starts on Path B</td>
<td>349</td>
</tr>
<tr>
<td>Figure 17-22</td>
<td>Schedule Risk Histogram</td>
<td>352</td>
</tr>
<tr>
<td>Figure 17-23</td>
<td>Cost Risk Histogram</td>
<td>352</td>
</tr>
<tr>
<td>Figure 17-24</td>
<td>Standard Deviation</td>
<td>353</td>
</tr>
<tr>
<td>Figure 17-25</td>
<td>Six Activity Network Example</td>
<td>354</td>
</tr>
<tr>
<td>Figure 17-26</td>
<td>PERT Calculations</td>
<td>354</td>
</tr>
<tr>
<td>Figure 17-27</td>
<td>Distribution Curve for Path U-V-X-Z</td>
<td>355</td>
</tr>
<tr>
<td>Figure 17-28</td>
<td>Distribution Curve for Path U-W-Y-Z</td>
<td>355</td>
</tr>
</tbody>
</table>

Chapter 18 Scheduling in a Performance Measurement Environment

<table>
<thead>
<tr>
<th>Figure 18-1</th>
<th>Earned Value Project Management: The Process</th>
<th>374</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 18-2</td>
<td>Planning and Scheduling</td>
<td>374</td>
</tr>
<tr>
<td>Figure 18-3</td>
<td>Schedule Integration - Schedules Must Tier</td>
<td>377</td>
</tr>
<tr>
<td>Figure 18-4</td>
<td>WBS Levels vs. Schedule Levels</td>
<td>377</td>
</tr>
</tbody>
</table>
Chapter 19 The Estimating Process
Figure 19-1 Earned Value Project Management: The Process ... 398
Figure 19-2 Estimating Topics ... 398
Figure 19-3 Levels of Estimate Detail 1 ... 403
Figure 19-4 Levels of Estimate Detail 2 ... 403

Chapter 20 Types of Estimates
Figure 20-1 Earned Value Project Management: The Process ... 406
Figure 20-2 Estimating Topics ... 406
Figure 20-3 Types of Estimates ... 409

Chapter 21 Estimate Development
Figure 21-1 Earned Value Project Management: The Process ... 412
Figure 21-2 Estimating Topics ... 412
Figure 21-3 The Estimating Process ... 413
Figure 21-4 Inputs for Estimate Development ... 416
Figure 21-5 Estimate Outputs ... 417
Figure 21-6 Estimate Development Example 1 ... 418
Figure 21-7 Estimate Development Example 2 ... 419
Figure 21-8 Estimate Development Example 3 ... 419
Figure 21-9 Estimate Development Example 4 ... 419
Figure 21-10 Level of Detail Summarization ... 420

Chapter 22 Learning Curves
Figure 22-1 Earned Value Project Management: The Process ... 436
Figure 22-2 Estimating Topics ... 436
Figure 22-3 Learning Curve - Normal Coordinates ... 437
Figure 22-4 Learning Curve - Log-Log Coordinates ... 437
Figure 22-5 Learning Curve Showing End of Production Inefficiencies ... 440

Chapter 23 Cost Risk Assessment
Figure 23-1 Earned Value Project Management: The Process ... 446
Figure 23-2 Estimating Topics ... 446
Figure 23-3 Normal Probability Distribution ... 448
Figure 23-4 Uniform Probability Distribution ... 448
Figure 23-5 Triangular Probability Distribution ... 448
Figure 23-6 Actual Risk Simulation Results ... 448
Figure 23-7 Cumulative Probability Curve 1 ... 449
Figure 23-8 Increased Iterations ... 449
Figure 23-9 Right Skewed Example ... 450
Figure 23-10 Kurtosis Example ... 450
Figure 23-11 Other Considerations Example 1 ... 451
Figure 23-12 Other Considerations Example 2 ... 451
Figure 23-13 Other Considerations Example 3 ... 452

Chapter 24 Estimate Review
Figure 24-1 Earned Value Project Management: The Process ... 456
Figure 24-2 Estimating Topics ... 456

Chapter 25 Tracking the Estimate
Figure 25-1 Earned Value Project Management: The Process ... 464
Figure 25-2 Estimating Topics ... 464
Figure 25-3 Estimate Traceability ... 466
Figure 25-4 Estimate History Form ($ x 1000) ... 466
Figure 30-8 Management Reserve .. 536
Figure 30-9 Budget Summary ... 537
Figure 30-10 Work Authorization Document .. 539

Chapter 31 Collecting Actual Cost
Figure 31-1 Earned Value Project Management: The Process 546
Figure 31-2 Cost Element Examples .. 546
Figure 31-3 Data Source Matrix ... 547
Figure 31-4 Accounting Subsystem Interfaces with Project Management 548
Figure 31-5 Material Accounting .. 551
Figure 31-6 Material Measurement ... 551
Figure 31-7 Matrix of Indirect Cost .. 552
Figure 31-8 Indirect Analysis - An Example ... 553

Chapter 32 Performance Measurement Calculations and Estimates at Completion
Figure 32-1 Earned Value Project Management: The Process 560
Figure 32-2 Mixing Variances ... 561
Figure 32-3 Graphical Schedule Conversion .. 561
Figure 32-4 Trend Analysis ... 562
Figure 32-5 Trend Analysis with Percentage Threshold 562
Figure 32-6 Estimate at Completion ... 563
Figure 32-7 “To Complete” Performance Index (TCPI)\(EAC\) 565
Figure 32-8 Performance Indices Comparison 565
Figure 32-9 Range of Estimates at Completion 568
Figure 32-10 Performance Measurement Data Concern 569
Figure 32-11 Combining SPI and TF Data .. 569
Figure 32-12 Combining SPI and CPI (Labor Accounts) 570
Figure 32-13 Performance Report - Work Breakdown Structure 571
Figure 32-14 Performance Report - Project Organization 571
Figure 32-15 Material Variance Components 573
Figure 32-16 Labor Cost Variance Components 574
Figure 32-17 Cost and Schedule Impacts .. 574

Chapter 33 Variance Analysis and Corrective Action
Figure 33-1 Earned Value Project Management: The Process 588
Figure 33-2 Data Traceability ... 589
Figure 33-3 Variance Analysis Report .. 592
Figure 33-4 Corrective Action Log ... 594

Chapter 34 Baseline Revisions and Change Control
Figure 34-1 Earned Value Project Management: The Process 600
Figure 34-2 Change Control ... 603
Figure 34-3 Effect of Changes .. 603
Figure 34-4 Control Account 1 .. 603
Figure 34-5 Control Account 1 Closeout .. 604
Figure 34-6 Control Account 1A ... 604
Figure 34-7 Contract Budget Base Log ... 605
Figure 34-8 Baseline Change Request ... 607
Figure 34-9 Internal Replanning .. 609
Figure 34-10 Rubber Baseline ... 610

Chapter 35 Subcontract Management
Figure 35-1 Earned Value Project Management: The Process 620
Figure 35-2 Subcontract Risk Factor .. 621
Figure 35-3 Relationship of Risk to Contract Type 621
Chapter 36 Implementation of the Project Management Process

Figure 36-1 Earned Value Project Management: The Process .. 654
Figure 36-2 Implementation of the Project Management System ... 655
Figure 36-3 Baseline Schedule Development Flowchart ... 656
Figure 36-4 Performance Measurement Flowchart ... 659
Figure 36-5 Implementation Schedule .. 662
Preface

This book is about project management. It is not about all aspects of project management but it includes some of the most important aspects. This book is about how the planning, control, and management of projects can be improved through the use of the concept called Earned Value.

This book is intended for anyone who desires to know more about project planning and control and how to improve these processes through the use of Earned Value. Intended readers include project and program managers, project control personnel, project technical personnel, procurement activity personnel and the stakeholders and owners of projects. While it is intended for a wide range of readers, each is assumed to have a basic familiarity with the requirements and the disciplines of project management. Readers new to this arena would be well advised to supplement this reading with a basic but general work on Project Management.

The material in this book has been drawn from the collective experiences of the author and many of the professional personnel of Humphreys & Associates, Inc., consultants in project and program management for over forty years. This material has been presented in seminars, workshops and successfully used assisting our clients in the United States and around the world. While introductory theory is explained, time tested samples are provided. Samples are presented from specific industries. Please do not conclude that a sample does not apply to those of you in the construction, software, or other industries.

To facilitate the learning experience, the topics covered are linked together in a process flowchart. This flowchart is displayed at the beginning of each chapter and the elements of the flowchart addressed in that chapter are highlighted. In addition, the chapters have been grouped into Sections. Each Section represents a major activity in the planning and control process, Organization, Scheduling, Estimating, and Earned Value. These are supplemented by a Section on Implementation (of project planning and control) and by a Conclusion and an Appendix.

To further aid the reader, a series of questions about chapter content are found at the conclusion of each chapter. The answers are provided in the Appendix. In addition, at the end of each Section there is a Section Quiz. Again the answers are provided in the Appendix. Finally, the majority of chapters contain one or more Case Studies. These are practical exercises that have been drawn from our consulting experiences and presented in Humphreys & Associates, Inc. seminars and workshops. The Case Studies have been found to reinforce the participant’s learning. Suggested solutions to these Case Studies can be found on our website at: www.humphreys-assoc.com.
PROJECT MANAGEMENT USING EARNED VALUE

Objectives of this Chapter:
1. Define “project” and project management.
2. Describe the performance-oriented approach using an Earned Value Management System and explain why it is superior to actual versus budget comparisons.
3. Discuss factors affecting the appropriate level of detail for Earned Value implementation.
4. Introduce the process flowchart for the Earned Value Project Management process.

What is a Project?
Before delving into the intricacies of the Earned Value Management process, projects and Earned Value Management need to be defined first. A project consists of a defined objective to develop or produce a new product, capability, or to expand capacity within a specified time frame and budget. Examples of projects include large capital-intensive efforts such as highway construction, new commercial buildings, power plants and petrochemical plants, water treatment plants, flood control, dams, bridges, hospitals, schools, prisons, and churches. These are the obvious, highly visible projects.

They are not the only types of projects as new product development is also a project. A new automobile, engine, or communication satellite is a project. Other projects include research and development, definition of new information systems, design and installation of communication systems, creation of new software programs, and computer hardware advances.

Projects are so widespread that it is difficult to get through the day without being involved in some way with a project, whether it is sitting in traffic while road work continues, finding a more efficient information flow for office communication, or managing a home improvement.

The Project Management Institute (PMI) defines a project as:
A project is a temporary endeavor undertaken to create a unique product, service, or result. The temporary nature of a project indicates a definite beginning and end. The end is reached when the project’s objectives have been achieved or when the project is terminated because its objectives will not or cannot be met, or the need for the project no longer exists.¹

A well conceived project could also be characterized as any endeavor that has a well-defined scope of work and optimistic yet achievable schedule and cost objectives.

The words “project” and “program” are sometimes used interchangeably in industry, resulting in some confusion. A program is made up of individual projects to be accomplished. For example, the inertial guidance system for an aircraft may be a separate project on a program. Because

projects and programs share the same characteristics they can be treated in a similar manner. For that reason, throughout this text, the term “project” will be used generically to refer to both projects and programs.

Now that project has been defined, what is Earned Value Management? It is the process of defining and controlling the project so that defined objectives are met. The controlling aspect includes scope control, schedule control, and budget control. It also includes the process of identifying and minimizing risk. There are many aspects involved in Earned Value Management, including development of the Earned Value Management System. An Earned Value Management System is a set of processes and tools used to facilitate the management of a project.

Managing Projects

Many projects result in highly successful completions. Successful projects contain many common characteristics: they were well defined and organized, had a closely monitored work scope, had optimistic yet achievable schedule and budget from the time of initiation, and were closely monitored and managed. Many projects have been successful for another reason: they benefited from mistakes on other projects. The primary factor observed on successfully managed projects is managing performance. The common thread throughout all of the topics in this textbook is exactly that.

The approaches and techniques that will be discussed have a performance measurement orientation, because the better something can be measured, the better it can be managed.

In a performance measurement system, cost and schedule targets are assigned to each activity planned in a project and to the project itself; progress (performance) is measured against these targets. Deviations from the activity targets and the causes of the deviations are identified and action is taken to minimize adverse consequences to the project.

Projects require expertise from many disciplines. Close coordination and communication are essential parts of successful execution of a project. To achieve these, a separate “project team” is typically assembled for accomplishing the project’s scope of work. This team is organized using individuals from various disciplines such as accounting, purchasing, engineering, manufacturing, testing, operations, finance, contracts, construction, project controls, and may also include subcontractors. Some people provide part time support to a project. These might include any of those mentioned above and others such as the legal department, record retention, financial services, and executive management.

The job of managing all of these organizations and people is typically assigned to a full time senior individual who is designated as the project manager. A project manager should meet several specific qualifications: many years of experience in the type of project being managed to be technically qualified; a degree to be academically qualified; and stamina to be physically qualified. In addition, project managers must have good processes and tools to effectively manage the people and the project.

The project manager must orchestrate the entire project to achieve the technical, schedule, and cost objectives. If a project is an internal endeavor, then a project manager’s role is to manage the internal departmental interfaces and contractors, and possibly other owners and customers, in addition to all of the internal staff.

Unlike normal functional organizations, a project has a specific duration. Even as a project is initiated, its purpose is to accomplish defined objectives and disband. A project team’s job is to quickly accomplish the technical scope of work, resource as efficiently as possible, and then move on to the next project. The project manager’s job is, therefore, inherently complex and challenging. Besides the interfaces that must be managed on a daily basis, he or she must often be a motivational expert since the many players involved may have different goals. For many reasons, a project manager has a great need for accurate status information. Only with reliable indication of project status can concerns be surfaced early enough to allow corrective action, preventing potential concerns from becoming real concerns that adversely impact technical, schedule, and cost objectives.
Examples used throughout this text are extracted from actual experiences. Frequently it is easier to illustrate a concept by showing what can or will happen if certain fundamentals are ignored than what happens if they are followed. If the principles in this text are followed, there is a good probability of executing a well-managed project. If they are ignored, unpleasant, career-limiting, unsuccessful experiences can occur.

Depending on project risk, project duration, and cost, (technical, schedule, and cost), certain aspects may be implemented less stringently. The principles do not change. It is still necessary to define the scope of work, have a plan for accomplishing the work, and to manage the plan. However, the level of detail of the implementation can vary. Unsuccessful applications of these principles have also happened when organizations went overboard on the level of detail of implementation. If common sense is forgotten, it is possible to create a management system that requires so much effort that it requires an extensive staff just to provide the production and distribution of data. The cost of the management system is then not worth the additional insight received regarding project status.

The Earned Value Management tools that are recommended in this book have been effectively used to improve management on a multitude of projects. By selectively employing tools, the practitioner will improve management on current and future projects and thus, the prospects for project success.

There are several other topics related to Earned Value Management that are not directly covered. These include contract administration, project administration, and material and subcontract management. These are, however, incorporated within the discussions of related subjects generally performed by these functions.

The contract type has an impact on the extent of Earned Value Management implementation, but all of the basic information is still necessary to ascertain project status regardless of the contracting arrangement. Experience shows that too much attention is placed on the type of contract rather than incorporating all of the information, but at a different level of detail.

The human aspects of Earned Value Management must not be forgotten either. As mentioned before, the project manager needs to be a motivational expert. The project manager also needs a strong supporting staff. No single person can successfully perform all of the work involved in a major project. He or she must rely on the support of many others. This makes the project a team effort. Even the best systems will be less effective in the hands of individuals who do not cooperate with each other and do not work towards a common goal. An underlying assumption is that effective management tools will facilitate better management of a project and minimize the confusion that results from a project that is not well defined and planned.

Background

In the past few decades, many large projects in numerous industries experienced significant schedule delays and cost overruns. Nuclear power projects stretched for years beyond their original schedule and more than tripled in cost. Software development projects in most companies required so much lead-time that the intended users had to find alternative ways of accomplishing their goals. In other cases, competitors beat software development firms to the marketplace and millions of dollars were wasted. Water treatment and sewer treatment plants soared in cost, with immediate impact on the consumer’s water bill. Research and development projects and military projects were cancelled because of continually escalating schedule and cost projections. The U.S. auto industry suffered from a perceived lack of quality and unit prices increased. Many of these cases became highly visible to a large number of people.

For the project managers, the owners, and customers of these projects, this was not the objective envisioned in the project plan. How did this happen?

Causes were both internal and external. Scope changes occurred without being recognized and incorporated into a revised plan for accomplishing the work. Customer needs changed, sometimes because of a delay in finishing a product, thus resulting in obsolescence. Delays in mate-
rrial delivery occurred without properly reflecting the impact to other work activities. Regulations changed, frequently affecting the time needed to acquire permits or authority to proceed. Lack of coordination between contributing groups meant delays because of missing information, design or otherwise. When these and other disruptions occurred, resulting schedule slippage had large cost impacts because of high rates of escalation. Every delay was penalized with a significant negative economic consequence.

Typically a domino effect is observed. First, a technical problem occurs. This is followed by a negative schedule variance and ultimately a negative cost variance. Sometimes the dominos fall very fast, but problems could evolve over months.

Regardless of the source of difficulty, the underlying problem was that impacts were not recognized quickly enough when conditions changed. In some cases, project managers were ignoring variances from the plan and failing to take action because they did not believe the variances were real. In others, they were not informed well enough about the variances. The situation was much like that shown in Figure 1-1.

In Figure 1-1, the Estimate at Completion (EAC) is below budget throughout most of the life of the project. While challenges were faced daily in the management process, there was no way to quantitatively assess the impact in a timely manner. By the time a schedule slip or an overrun was forecast, it was too late to do anything to minimize its impact. The result was shocking surprises.

This scenario occurred often enough that there was a heightened awareness of the technical, schedule and cost risk associated with projects. Because of this risk, many organizations reacted by creating better management systems. These systems provided the capability of integrating all of the available data into a cohesive form so that better visibility would result. One of the greatest challenges for these systems was timeliness. If information were not available until after the fact, all that would be accomplished from its use was a well documented history of what went wrong rather than an effective tool for management during the life of the project. This improved visibility must allow for earlier identification of trends so that situations like the one pictured in Figure 1-1 can be prevented.

Most projects develop a time phased plan to accomplish the work. This resembles an S-curve shape. In the early stages, staffing and progress may be slow. In the middle part of the curve, both staffing and progress should be at their peak. At the end of the curve, progress slows while actual staffing may still be at peak or near-peak levels. The implications are obvious: identify and address the problems earlier in the project life and there is a much greater chance of avoiding schedule slips and large cost overruns. Early in the project, it takes very few additional resources to accelerate and resolve variant conditions. At the peak of the project activity, it takes enormous resources just to stay even with the progress curve, making catch-up very difficult. Even worse, at the end of a project, even great cost expenditures may do little to accelerate technical and schedule progress. Improved early visibility is a primary objective of any project management system.

The Performance-Oriented Approach

Every company has some sort of tracking system to indicate how it is performing. Unfortunately, in many cases, the tracking may have been no more sophisticated than what is shown in Figure 1-2, Budget Plan versus Actual Cost. This was
the traditional approach used for many years in companies and is still used in too many organizations.

A budget versus actual comparison is shown in Figure 1-4. This may appear to indicate that a cost underrun is occurring. However, there is no basis for projecting what status will be at project completion. It may be that the project is incurring a cost underrun, but it may also be that the project is behind schedule and future expenditures will accelerate significantly. This is shown in Figure 1-5.

What is missing from the comparison shown in Figures 1-4 and 1-5? There is no measure of what has actually been accomplished for what has been spent. The fact that money was being spent slower than planned could mean that there would be a cost underrun. It could just as easily mean that the project is behind schedule, or both, or neither.
The key to knowing what the true progress and status actually are requires the addition of a third line to the curve that reflects the dollar value for the work that has been completed.

This third line results from a “performance-oriented” approach. This approach shifts the emphasis from expenditures to work accomplishment. The project objective should be to accomplish all of the work rather than to spend all of the money.

When using a performance oriented approach, work scope and associated responsibilities must be defined in the initial planning phase of the project. This is a far better approach than defining responsibility in some form of finger-pointing exercise of guilt determination after a crisis occurs. It allows the person responsible for an emerging variance to take action before it becomes a problem. The entire organization benefits from this approach. If action cannot be taken in time to entirely avoid a problem, at least the impact can be accurately assessed if there were an objective method of measuring progress. By setting variance standards or “thresholds”, the system can be used as a high level Management by Exception indicator. A result is the ability to develop improved forecasts of technical performance, scheduled completion, and final cost earlier in the project. The third line that represents work accomplishment has been added to Figure 1-6.

Now there is a completely different picture of the project status. This graphic depicts the value of the work scheduled to be accomplished, the value of the work accomplished, and how much the accomplished work actually cost. Actual costs to date are still below the budget line, but the value of work accomplished is even less. In other words, cost is not underrunning, but in fact is overrunning relative to the value of the work accomplished. Similarly, a behind schedule condition is apparent. The various methods for measuring the accomplishment of work will be presented in later chapters of this text, but the important point is that it can be measured and compared with an approved plan.

With this type of information, it is possible to project schedule slippage and cost overrun in early stages of the effort. This early warning feature is one of the most important advantages of including a measure of work accomplished. Figure 1-7 illustrates how these projections might be represented.

Summary Implementation Concerns

The Earned Value Management process concepts are appropriate in any single project or multi-project environment. On any type of project in any industry, regardless of how small it is, a project must be effectively defined to be effectively accomplished. A project cannot be completed if its scope is not understood. Individuals or organizations must be identified with responsibility for completing the work, and a time frame must be established for accomplishing that work.
Budgets and other resources that are allocated to the project need to be identified. In other words, a plan for accomplishing the work is needed. Then progress must be measured against that plan. When variances are identified, corrective action should be identified, evaluated, and implemented in the most cost effective manner. These are standard techniques that apply in any situation.

Experience shows small, short duration projects are often managed far worse than the large projects that have high visibility. Because small projects are considered less significant towards the overall profit picture, they are sometimes overlooked with very unfavorable results. When small projects ignore basic management concepts, they commonly miss their budgets by 100 to 300 percent. The accumulation of absolute dollars may be more than a large project that misses its budget by 10 percent. The point is that the summation of many poorly managed small projects could exceed the impact of a large project.

A convenient aspect of the performance oriented approach is that it works in all environments including research and development, manufacturing, testing, construction, procurement, software development, and design. It also works on all types of contracts, regardless of whether they are firm fixed price, cost plus, or some other type between these two extremes. However, these factors play an important part in deciding on the level of detailed implementation to be used.

Factors Affecting System Implementation Detail

Among the factors that will impact the selection of project controls for a particular application, are the following:

- Project size and duration.
- Technical, schedule and cost risk.
- Project contract environment.
- Management involvement level.

The size and duration of a project are critical considerations when making key decisions on desired management system characteristics.
Section 1 Earned Value Project Management and Organization

responsible for accomplishing the work will need a detailed system. However, the owner/customer should need a far less involved reporting system and could track progress on a higher level. There are exceptions to this as well. If the owner/customer were hiring the labor for the project and operating in a hands-on management situation, then detailed controls may be needed in the owner’s/customer’s organization.

Common sense and reason must be used when developing and implementing Earned Value Management Systems. Implementing systems at too low a level of detail and with unnecessary complexity has probably caused nearly as many problems as having no system at all. While that may be a slight exaggeration to make a point, the objective of improved visibility can be clouded just as easily by too much data (and not enough information) as it can by lacking enough input.

Earned Value Management System Recognition

The techniques developed and explained throughout this text were implemented widely only after it became apparent that they were necessary. They have not always been enthusiastically embraced by all project participants for various reasons. Some do not want extra visibility into the status of their work if that same information is in the hands of their boss and/or their customer. Typically, managers prefer to attempt resolution of problems before they are discovered by others. While this is understandable from a human nature standpoint, it is entirely unacceptable from a project manager’s viewpoint. If problems are hidden and not satisfactorily resolved, they will later have increasingly substantial impacts to project cost and schedule. It is essential that the project manager has the information and tools to assess status accurately, allowing more rapid, effective management decisions.

The Earned Value Management Process

Successful management of a project involves many concepts and implementation concerns. A project is any endeavor that has a well understood statement of work and optimistic, yet achievable, schedule and cost targets. An Earned Value Management System is a tool set used to facilitate management of a project. There are many considerations in this complex discipline. A series of flowcharts are used throughout the text to exhibit how the various chapters interrelate.

The master flowchart is shown in Figure 1-8, “Earned Value Project Management: The Process”. This chart is repeated at the beginning of each chapter to show where that chapter fits in the overall process. Individual blocks will be expanded as necessary into lower level, more detailed flowcharts for the more involved topics. This will help assure that a proper understanding of each concept is achieved.

The fundamental concept of this entire book is that the Earned Value Management process should be logical, well-defined, and integrate all of the pertinent information relating to a project’s status into a comprehensive picture. Every organization implements many of the concepts; few of them integrate those concepts into a unified status. That is the primary challenge: to use all of the tools in the tool box in a coordinated manner so that they meet the objective of improved project visibility, allowing earlier management decisions based on accurate information. This provides a project manager the best opportunity to meet project schedule and cost objectives while achieving the technical requirements.

The following is an overview of the process steps in Figure 1-8.

The Process Steps

Step 1 – Project Objectives

The first step in the process is definition of the project objectives. These objectives include a general description of the technical requirements of the project, its budget, and the time frame for the work to be completed. A targeted start date and a completion date are included in this description. There may even be some guidance provided as to whether this is a technical, schedule and/or cost critical project. These can be critical pieces of information: as an example, at one
of the major auto manufacturers a project to design a new bumper system was being initiated. The time for this product to reach the market was critical, with a goal of eight and a half months. However, the contractor’s project manager assumed that the project was more cost critical than schedule critical. This resulted in the project plan being stretched to 18 months to lower the peak cost requirements.

When the owners and customers reviewed the contractor’s plan, they realized that the primary objectives had not been explained clearly enough. The contractor was sent back to completely redo the plan to support the eight and a half-month requirement. If this project had been managed to the 18-month plan, it would have lost much of its commercial appeal.

The project plan is the set of documentation and directives that formalize the entire management process described in this text, including project objectives, general scope, project organization, desired schedule/cost goals, and a description of management systems and procedures to be used in completing the project. The project plan reflects the project specific internal as well as customer management, reporting, and analysis requirements. The approach used to code and organize the project data is an important up front activity to establish a standard approach to integrate the technical, schedule, cost, and risk data to generate reliable information for effective management, reporting, and analysis for the life of the project.
Step 2 – Work Scope Definition, Risk Assessment and Management

Once the project objectives have been defined, the next function that must be fulfilled is to delineate, capture, and define the entire scope of the project. This is the best opportunity to assure understanding among the various project participants. It also is the best chance to avoid later nightmares with numerous scope changes and possible litigation. The work breakdown structure (WBS) and work breakdown structure dictionary are the tools used to segregate the work into manageable components and to define each component.

A risk assessment of the technical goals is an important part of this process. Risks are identified and mitigation plans are developed. After the organization is assigned in Step 3, additional risks may be identified and the risk plans updated.

Step 3 – Responsibility Assignment, Work Teams

Once the scope is crisply defined, the next step is to document who is responsible for the work. Each component of work defined in the work breakdown structure will have one individual assigned who will be responsible for the scope, schedule and budget for that work.

It takes an entire project team working together to make the project a success, but only a single individual to cause it to fail. This explains some of the reason for the growing popularity of work teams that help break down the traditional barriers between functional work areas (i.e. departments which can also include subcontractors) and encourage a team spirit.

Work teams are composed of the functional elements necessary to develop or produce the end product. This work team structure has advantages in that fewer management accounts are needed, there is improved communication and efficiency, and potential risks often are surfaced earlier.

Step 4 – Planning

Once the work definition and organizational concerns have been addressed, the particulars of the Earned Value Management process must be developed. These include the functions of scheduling, estimating, budgeting, and performance measurement. These elements must all be performed and integrated for the baseline plan to be developed.

Step 5 – Planning and Scheduling

The scheduling process is defined as what must be done, and when it must be done, to accomplish the project objectives on time.

Step 6 – Estimating

The estimating process is defined as a forecast of how much it will cost to perform the work.

Step 7 – Definition of Earned Value and Earned Value Techniques

Determining performance measurement is accomplished through the use of Earned Value techniques, which is the key concept of the entire Earned Value Management process. While this definition has been given earlier, it is important enough to repeat here. It provides a critical element of information when project status is assessed by providing insight into what has actually been accomplished compared to the cost of performing that work. What has been accomplished can also be compared with what was planned to be accomplished to allow an accurate picture of the current cost and schedule position.

Earned Value is determined through numerous techniques. The techniques selected for a project will depend on each application, but objective guidelines are available to help the selection process.

Step 8 – Schedule and Cost Risk Assessment

A topic of growing importance is that of risk assessment. This Earned Value Management process includes three components: technical risk, schedule risk, and cost risk. Each of these has its own considerations and impacts. Like the overall Earned Value Management process, these are also interrelated. There has been some tendency over the years for managers to ignore the possibilities of identifying and especially quantifying risk because the results may be disconcerting. However, ignoring risk does not
lessen its impact, and will most likely increase its effects. As profit margins become slimmer in a highly competitive environment, the topic of risk assessment must be addressed.

Step 9 – Integrated Baseline Plan and Work Authorization Development

Next we come to the center of the flowchart for a concept that is central to the overall process: performance measurement baseline development. The performance measurement baseline is the official, documented plan that shows in detail how the project objectives are to be achieved. All of the activities described thus far and the processes displayed on the Figure 1-8 flowchart are needed to achieve a well-planned performance measurement baseline. At the completion of this step, the technical, schedule, and budget baselines have been established and integrated; the schedule reflects the time frame where all of the detailed work scope is planned to be performed and the budgets are time phased based on the schedule requirements. The work is authorized to the responsible manager and the technical work commences.

Subcontract management is a critical element for many projects. The subcontractor’s technical, schedule, and budget baselines must be integrated with the prime contractor’s baseline. Since the integrated baseline must include this element, a separate chapter on subcontract management (Chapter 35), is included in this step.

Step 10 – Establishing the Baseline Plan, Measuring Progress

At this point, there is a shift from the planning phase of baseline establishment to the control phase of the Earned Value Management process. Once the performance measurement baseline has been established, the main concern from that point on is the determination of progress. Progress is measured using the same earned value techniques that were established as part of the planning process. The techniques used when the performance measurement baseline (PMB) was established must be applied consistently when progress is determined. Progress is compared with the plan, and this comparison, in turn, provides the schedule variance.

Step 11 – Collecting Actual Costs

All projects will have a system for collection of actual costs. Regardless of how unsophisticated a system may be this component must be included. The challenge in this area is to define account structures that can be used for consistently comparing budgets, actuals, and performance. This could mean modification to existing accounting structures. Actual costs are necessary so that they can be compared with progress, and this comparison, in turn, provides the cost variance.

Step 12 – Performance Measurement Calculations

After progress is measured against the plan and the actual cost is entered, the three points necessary for data analyses are available. There are many calculations that aid in assessing the project status and assist the manager in targeting problem areas for corrective action. These calculations also assist in the Estimate at Completion and Variance Analysis reporting.

Step 13 – Estimate at Completion and Schedule Forecasting

Organizations are very concerned with bottom line performance. One of the essential pieces of corollary information needed to evaluate an ongoing project is, “When is it going to finish and what is it finally going to cost?” This answer will be used for many purposes, ranging from reward of project participants with better positions on new projects to project cancellation. The “Estimate at Completion” is so important that it can become a highly political number. A well-defined Earned Value Management System will have objective means of determining and evaluating estimates at completion to improve their accuracy even in the early stages of a project. This can only be achieved with defined performance factors that provide an accurate picture of what has happened to date and what is forecast to happen.

Step 14 – Variance Analysis and Corrective Action

Variance analysis and corrective action are very important to the overall process. Much time and effort are invested in baseline establishment, and
now the baseline information can be used as a basis for determining the course of the project. The tools defined in the previous two Steps directly feed variance analysis and corrective action. By comparing earned value to budget, schedule variances can be determined. By comparing earned value to actual cost, cost variances can be determined. The second element, corrective action, is a critical part of the control phase. At this point in the process, there is a strong basis for determining the project’s true position versus the approved plan so that exceptions can be addressed. The carefully defined system will provide immediate feedback as to whether the corrective action was successful.

Step 15 – Baseline Revisions and Change Control

An essential aspect of the Earned Value Management process is managing change. After all of the effort that goes into developing the baseline plan and determining current status, it is always a disruption to change that plan. Nevertheless, changes are a part of every project and must be addressed as to how they will be reviewed, approved, and incorporated into the plan. Procedures are required to manage the change control process or, over time, the project’s reports will relate less and less to the current scope, schedule, and budget as well as the true status. One guideline stipulates that as much attention is needed for processing baseline changes as was used in developing the original baseline plan.

Step 16 – Implementation of the Project Management Process

Now that the system design is complete, there are still some ways to streamline the information flow. These include topics such as paperless systems and electronic data integration. There are also programs available for automating much of the data reduction and analysis, with built-in sanity checks to catch obvious errors. These topics are discussed in the final chapter of this book.

Conclusion

A project is any endeavor that has a scope of work and optimistic yet achievable schedule and cost targets. A project is typically managed by a single individual known as a project manager, who must be able to coordinate a multi-functional team towards the achievement of all of the project objectives. One of the greatest needs of the project manager is accurate, reliable, and timely information to enable effective management decisions. The information needs to include a valid assessment of project progress and status. Projects were historically monitored by comparing planned expenditures against actual expenditures.

This approach lacks the most important element of status: a measure of work accomplished. This shortcoming can be overcome by including a third data element that determines an objective value of work completed. This is known as the performance oriented approach. The performance oriented approach allows early identification of trends that indicate if a project’s objectives are in jeopardy. This “early warning system” allows a timely response on the part of management to mitigate unfavorable outcomes by making informed decisions.

It is important that the tradeoff between adequate project status visibility and excessive data collection be recognized and addressed. This is accomplished by setting an appropriate level of detail in the implementation process. Factors that affect level of detail include project size and duration, risk (technical, schedule and cost), type of contract, and desired level of management involvement.

The entire process of managing projects must be a logical one. Each of the steps of the Earned Value Management process is illustrated by the flowchart in Figure 1-8 and will be discussed in detail in subsequent chapters.
Chapter 1 Review Questions

1-1. Explain the difference between a project and a program.
1-2. What aspects of a project are managed during the controlling phase of Earned Value Management?
1-3. How is a project organized differently from a functional organization?
1-4. What are some frequent causes of project delays?
1-5. Why is a comparison of actual costs to date versus budgeted costs not adequate from an Earned Value Management standpoint?
1-6. List at least three factors that will affect the level of detail appropriate for implementation of earned value on a project.

True or False

1-7. The Earned Value Management process is only applicable for large projects.
1-8. The fact that more money has been spent at a point in time than was planned to be spent means that an overrun in final cost is indicated.
1-9. A program may be made up of multiple projects.
1-10. Performance measurement can be successfully applied in engineering, construction, manufacturing, and software development applications, among others.
1-11. Using a measure of performance allows earlier indication of potential increases in final cost.
1-12. From the customer’s viewpoint, a firm fixed price contract suggests the need for tight cost controls.

The answers to these questions can be found in Section 6, Solutions.
Index

A
accounting calendar, 549
activity, 230
change
future duration, 293
in progress duration, 293
critical, 310
duration
status impact, 278
example statused, 277
grouping, 216
hammock, 215
level of cost collection, 550
level of effort (LOE), 329–330
missed baseline dates, 232
out of sequence, 280
relationships, 159
finish-to-finish (FF), 159
finish-to-start (FS), 159
lag, 218
lead, 218
metrics, 229
parallel finish-to-finish, 328
parallel start-to-start, 328
start-to-finish (SF), 160
start-to-start (SS), 160
summary, 215
actual cost (AC)
See actual cost of work performed (ACWP)
actual cost of work performed (ACWP), 487, 545, 550, 560
accuracy, 554
data sources, 547
estimated, 555
labor hours versus labor dollars (reporting), 556
level of cost collection, 549
minimizing incorrect charges, 555
rates, 553
time lag, 553
actual finish date, 275
actual start date, 275
analysis
critical path method (CPM), 167
float trends, 303, 310
formulas, 559–574
formulas (list of), 729
funding, 550
labor cost variances, 573
material variances, 572
performance measurement, 559
reporting, 570
risk, 339, 351, 447
schedule network, 305–306
subcontract, 636
variance, 587
ANSI/EIA-748, 137, 373, 421, 619
apportioned effort, 521, 536
arrow diagramming method (ADM), 147, 157
authorized unpriced work, 605, 607
B
backward pass, 170–172
badgeless organizations, 631
baseline
changes, 603
over target, 266, 537, 635
rubber, 610
schedule, 261, 267, 291, 293, 296
changes, 266, 296
establishment process, 262
establishment timing, 265
versus current, 306
traceability, 540
baseline change request, 260, 606
baseline execution index (BEI), 233
budget
See also budgeted cost for work scheduled (BCWS)
values, 550
versus funds, 550
budget at completion (BAC), 550
budget plan
See performance measurement baseline (PMB)
budgeted cost for work performed (BCWP), 487, 491, 550, 560
calculating, 509
consistent with baseline, 513
determining when earned, 523
equipment, 550
material, 524, 550–551
purchased services, 550
rates, 553
schedule as basis, 375
budgeted cost for work scheduled (BCWS), 487, 550, 560
and work authorization, 540
estimate as basis for, 408
rates, 553
schedule as basis, 265, 375
See also performance measurement baseline (PMB)
budgeted cost of work remaining (BCWR), 566
C
cash flow, 550
change control, 599, 601
and the PMB, 602
program, 601
changes
baseline, 603
causes of, 599
directed, 633
documenting, 294, 466
duration
future activity, 293
in progress activity, 293
external, 599
formal reprogramming, 635
how to control, 601
internal replanning, 600, 609, 634
schedule, 291, 294
schedule baseline, 266, 296
See also change control
stop work order, 609
subcontract, 633
tracking, 605
tracking original estimate, 463
types of, 599
charge number, 535
and work authorization, 540
commitments, 550
time lag, 550
constraint
See directed date
Constructive Cost Model (COCOMO), 426
contract budget base (CBB), 535–537
log, 605
Contract Performance Report (CPR), 552, 571–572, 574, 591, 605, 619
control account, 536
and planning packages, 509
and summary level planning package (SLPP), 534
and work packages, 509
baseline changes, 603
dollar value, 99
duration, 99
establishment, 97
examples, 97–99
identification, 96
level of cost collection, 549
level of detail, 98
management responsibilities, 98
plan, 540
subcontract, 625, 630
corrective action log, 594
corrective action plan, 593
Cost Accounting Standards (CAS) Disclosure Statement, 421, 545
cost baseline
See performance measurement baseline (PMB)
cost elements, 402
cost performance index (CPI)
combined with SPI, 570
efficiency concept, 564
performance concept, 564
cost risk assessment, 445–453
cost variance (CV), 493, 560
critical path, 169, 173
cost elements, 402
characteristics, 176
length index (CPLI), 232
test, 232
critical path length index (CPLI), 232
critical path method (CPM), 147, 169
completion estimate validity, 345
estimate validity, 342
fundamentals, 167
risk approach, 340
schedule traceability, 260
current
schedule, 267, 291, 293, 296
versus baseline, 306
D
direct costs, 545, 548
directed changes, 633
directed date, 175, 223, 229, 317–326
hard constraint, 319
imposed, 317
not earlier than, 317
not later than, 317
risk analysis impact, 348
soft constraint, 319
discrete effort, 511, 536
0/100 technique, 516
50/50 technique, 515
equivalent units technique, 518
incremental milestone technique, 514
milestones, 511
percent complete technique, 520
units complete technique, 516
distributed budget, 536
E
ever finish (EF), 170
ever start (ES), 170
earned value (EV)
See budgeted cost for work performed (BCWP)
earned value management
benefits, 495
defined, 32
fundamentals, 34, 489–494
illustrated (the brick wall), 499–505
implementation
concerns, 36
level of detail, 33, 37
process, 38, 494
relationship to risk management, 85
earned value management system
continuous improvement, 660
defined, 32
description, 373, 656
design, 654
dollar values for compliance, 621
guidelines, 137, 373, 376, 619, 621
implementation, 653
 process, 661
 schedule, 661
interface with accounting system, 548
procedures, 660
storyboard, 658
training material, 660
earned value techniques, 520
 0/100, 516
 50/50, 515
apportioned effort, 521
consistency with baseline, 513
discrete effort, 511
equivalent units, 518
functions, 509
incremental milestone, 514
level of effort (LOE), 522
milestone, 511
other, 523
units complete, 516
escalation factors, 421–425
estimate
 automating, 475–479
 basis for BCWS, 408
 basis for EAC, 408
 changes, 463
 compared to actual
 variance sources, 463, 465
cost flow development, 421–424
cost risk analysis, 450
defaults, 417
defined, 399
development inputs, 416
documenting assumptions, 457
escalation factors, 421–425
fast track impact, 409
fundamentals, 397
guidelines, 400, 418–420
input sources, 417
level of detail, 420
manufacturing costs, 425
method
 analogy, 416
 engineering build-up, 416
 parametric, 416
operating costs, 425
prerequisites, 400
process, 397, 411
review
 external, 457
 other factors, 458
 team, 458
role of WBS, 401–402
software, 426
 function points, 426
 lines of code, 426
templates, 401–402
traceability, 465
tracking, 463–469
type
 conceptual, 407
 definitive, 408
detailed, 408
 preliminary, 407
estimate at completion (EAC), 550
 comprehensive, 563
detailed, 563
development, 562
estimate as basis for, 408
independent, 565
justification, 594
range of, 568
estimate to complete (ETC), 550, 563
estimated ACWP, 555
estimated completion date (ECD), 568
F
 fast track, 252, 348, 409
 finish-to-finish (FF), 159
 finish-to-start (FS), 159
 float, 167, 173
 analysis, 303, 310
 negative, 230, 303
 monitoring, 309
 resolving, 303, 308
 secondary, 326
 status impact, 278
formal reprogramming, 635
forward pass, 170–172
fourteen point schedule health check, 228
 activities with lags, 229
 activities with leads, 228
 baseline execution index (BEI), 233
 correlation with GASP, 233
 critical path length index (CPLI), 232
 critical path test, 232
 hard constraints, 229
 high duration, 230
 high float, 230
 invalid dates, 231
 missed activities, 232
missing logic, 228
negative float, 230
no assigned resources, 231
relationship types, 229
free float (FF), 174
freeze period, 534
funding, 537
analysis, 550
profile, 550
funds versus budget, 550

G
GAO Best Scheduling Practices, 135, 259, 335
GAO Cost Estimating and Assessment Guide, 416
Generally Accepted Scheduling Principles (GASP), 134, 218, 233, 259, 375

H
hammock, 215
high duration, 230

I
independent estimate at completion (IEAC), 565
indirect costs, 421, 454, 548, 551
indirect pools, 548
integrated master plan (IMP), 211, 259
accomplishment, 213
coding, 213
criteria, 213
defined, 212
event, 213
IMS and WBS cross reference, 213
integrated master schedule (IMS), 211–212
coding, 213, 260, 378
IMP and WBS cross reference, 213
Integrated Master Schedule (IMS) Data Item Description DI-MGMT-81650, 169, 222, 260, 335, 375, 378, 572
integrated product team (IPT)
See work team
Integrated Program Management Report (IMPR), 169, 222, 260, 335, 375, 378, 552, 571, 574, 591, 605, 619
formats, 572
internal replanning, 609, 634
International Function Point Users Group (IFPUG), 427

L
lag, 218–222
late finish (LF), 170
late start (LS), 170
latest revised estimate, 563
latin hypercube, 447
lead, 218–222
learning curves
cumulative average method, 437
impacts, 439
selecting method to use, 438
tslope, 435, 437–438
unit method, 437
unit values, 438–439
level of effort (LOE), 522, 536
activities, 329–330
leveled finish, 200
leveled start, 200
logic network
See schedule network
logs, 536, 605

M
management reserve (MR), 535–536
log, 605
subcontract, 627
milestone, 157, 259–260, 511–513, 534, 625
examples, 513
monte carlo, 355, 447

N
negative float
See float
nonrecurring costs, 425

O
organization breakdown structure (OBS)
and work authorization, 539
chart definition, 91
intersection with WBS, 91
types, 92
out of sequence logic, 280
progress override, 280, 283
retained logic, 280
total float impact, 284
over target baseline (OTB), 266, 537, 635
over target schedule (OTS), 266, 309, 635

P
percent complete, 520
earned value technique, 520
physical, 277–278
project, 568
schedule, 277–278
percent spent, 568
performance indices, 564
performance measurement baseline (PMB), 509, 531, 535
changes, 599, 602, 604
development steps, 532
establishment timing, 537
structure, 535
performance measurement calculations
See analysis formulas
period of performance, 539
planned value (PV)
See budgeted cost for work scheduled (BCWS)
Planning and Scheduling Excellence Guide (PASEG),
planning package, 510
converted to work packages, 293, 533
precedence diagramming method (PDM), 147, 157
price variance (PV), 573
Program Evaluation and Review Technique (PERT), 147, 352
progress override, 280, 283
project
characteristics of successful, 32
defined, 31
objectives defined, 45–46
percent complete, 568
percent spent, 568
scheduling, 139
versus program, 31
rate variance (RV), 573
recurring costs, 425
remaining duration, 275, 278
resource
availability constraint, 198
curves, 200–201
defined, 195
eyear start curve, 200
float, 201
late start curve, 200
leveled dates, 200
leveled start curve, 200
plan, 195
profiles, 197
reallocation, 295
requirements, 197
time constraint, 198
usage curve, 198
resource leveling, 224
considerations, 199
process, 198
resource loading, 224
considerations, 199
objective, 197
process, 197
requirement, 231
responsibility assignment matrix (RAM), 91, 95–96, 537
level of detail, 96
retained logic, 280
review question answers
See solutions
revisions
See changes
risk
analysis, 339
output, 351
path duration, 342
pitfalls, 349
sampling techniques, 447
and variance thresholds, 590
assessment, 339
benefits, 339
conducting, 452
developing useful mitigation strategies, 339
implementation, 350, 355
outputs, 448–449
reasons for, 450
tools, 352
attributes, 78
classification, 78
contract type, 621
cost, 445
cumulative likelihood curves, 343
cumulative probabilities, 343
defined, 77
identification, 80
latin hypercube, 447
management
fundamentals, 77
plan, 79–80
process, 79
relationship to earned value management, 85
strategy, 84
model definition, 445
monte carlo, 355, 447
PERT, 352
probability distributions, 447
qualitative, 83
quantitative, 83
schedule, 226, 337
bias, 346
directed dates impact on, 348
fast track impact on, 348
See also schedule risk assessment (SRA)
subcontract, 621
threat or opportunity, 77
rolling wave planning, 266, 293, 296, 510, 533
root cause analysis
cost impact assessment, 573
float deterioration, 306
schedule impact assessment, 308, 573
See also variance analysis report (VAR)
S
schedule
and earned value management, 373
and work authorization (period of performance), 539
approach
aggressive, 224
conservative, 224
organizational, 225
project, 225
audit, 227
baseline, 261, 291, 293, 296
changes, 266
establishment process, 262
establishment timing, 265
basis for BCWP, 375
basis for BCWS/PMB, 265, 375
calendar, 331
changes, 291, 294
documenting, 294
duration, 293
current, 267, 291, 293, 296
current status, 267, 279
definition, 141
development data requirements, 142
driving path, 176
earned value contract requirements, 376–379
fast tracking, 252
focused work, 252
fourteen point health check, 228
fundamentals, 139
integrating subcontract, 624
level of detail, 226, 264
margin, 222, 309
activity method, 222
baseline finish variance method, 223
gap method, 223
lag method, 223
over target, 266, 309, 635
percent complete, 277–278
physical percent complete, 277–278
purpose, 143
quality, 227
reconciliation
progress and performance, 375
time phased budgets, 375
reserve, 222
risk, 226, 337
analysis output, 351
and cost overrun, 339
and early start scheduling, 349
and late start scheduling, 349
at path convergence, 346
bias, 346
CPM approach, 340
directed dates impact on, 348
duration validity, 348
fast track impact on, 348
highest path, 345
merge bias at path convergence, 347
other issues, 351
path duration, 342
probabilistic approach, 340
See also schedule risk assessment (SRA)
routine updates, 293, 296
status, 260, 267, 294
considerations, 280
data, 275
float analysis, 303, 310
streamlining, 252
traceability, 257, 259
achieving, 260
historical, 260, 293
horizontal, 259, 375
vertical, 259, 373
types
bar chart, 145
combination chart, 145
flow process chart, 146
gantt charts, 144
line of balance, 147
milestone chart, 144
modified gantt or milestone chart, 146
network diagrams, 147
set back chart, 146
update process, 275, 279
visibility task, 320
visibility tasks, 222
what if, 293, 295
work scope crosscheck, 57
schedule finish, 306
schedule network
acceleration, 243
other techniques, 252
activity relationships, 159
analysis, 305–306
backward pass, 170
calculated dates, 170, 278
calculations, 170, 174, 277
coding, 213, 260, 378
components, 157
CPM analysis technique, 167
crashing, 243
development concerns, 214
development technique
bottom-up, 212
IMP/IMS, 212
top-down, 211
directed dates, 175
display techniques, 161
forward pass, 170
out of sequence logic, 280
resource leveled dates, 200
resource loading, 197
resource loading requirement, 231
templates, 216–218
schedule performance index (SPI), 311, 565
and schedule status, 569
combined with CPI, 570
schedule risk assessment (SRA), 335–356
schedule variance (SV), 311, 493, 560
converted to time variance, 561
dollar versus time, 494
secondary float, 326
slack, 167, 173
solutions
chapter 1, 669
chapter 10, 681
chapter 11, 684
chapter 12, 685
chapter 13, 685
chapter 14, 687
chapter 15, 688
chapter 16, 689
chapter 17, 690
chapter 18, 692
chapter 19, 698
chapter 2, 670
chapter 20, 700
chapter 21, 700
chapter 22, 702
chapter 23, 703
chapter 24, 704
chapter 25, 705
chapter 26, 707
chapter 27, 710
chapter 28, 711
chapter 29, 712
chapter 3, 671
chapter 30, 713
chapter 31, 714
chapter 32, 715
chapter 33, 718
chapter 34, 720
chapter 35, 721
chapter 36, 727
chapter 4, 672
chapter 5, 673
chapter 6, 676
chapter 7, 678
chapter 8, 679
chapter 9, 680
section 1 quiz, 674
section 2 quiz, 693
section 3 quiz, 707
section 4 quiz, 723
start-to-finish (SF), 160
start-to-start (SS), 160
stop work order, 609
subcontract, 626
badgeless organization, 631
change control, 633
classification, 549
contract type
 cost reimbursable, 628
 firm fixed price, 629
 selecting, 622
 technical services, 629
time and materials, 629
control accounts
 impacts on, 625, 630
data analysis, 636
defined, 619
directed changes, 633
EVMS flowdown requirements, 620
 impact on RFP, 621
EVMS reviews, 636
factoring budget and earned value, 630
formal reprogramming, 635
integrating
 BCWS/PMB, 625
 schedule, 624
 WBS, 623
inter-divisional work authorization (IDWA), 631
internal re-planning, 634
major versus non-major, 619
management reserve (MR), 627
price versus fee, 626
reporting requirements, 623
risk, 621
schedule milestones, 625
surveillance, 636
time lag (data), 630
undistributed budget (UB), 627
VAR, 636
WBS, 626
summary activity, 215
summary level planning package (SLPP), 534
surveillance, 636
T
thresholds, 588
time now, 275, 277
to complete performance index (TCPI), 565
total allocated budget (TAB), 537
total float (TF), 170, 173
 analysis, 303, 305
 and SPI, 569
directed date impact, 320–321
 out of sequence logic method impact, 284
traceability
 baseline, 540
 estimate, 463
 historical, 465
 vertical, 465
 schedule
<table>
<thead>
<tr>
<th>U</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>undistributed budget (UB), 536</td>
<td>variance, 306</td>
</tr>
<tr>
<td>log, 605</td>
<td>analysis, 587</td>
</tr>
<tr>
<td>subcontract, 627</td>
<td>at completion, 560</td>
</tr>
<tr>
<td>usage variance (UV), 573</td>
<td>cost, 493, 560</td>
</tr>
<tr>
<td></td>
<td>duration, 306</td>
</tr>
<tr>
<td></td>
<td>labor cost, 573</td>
</tr>
<tr>
<td></td>
<td>material, 572</td>
</tr>
<tr>
<td></td>
<td>price, 573</td>
</tr>
<tr>
<td></td>
<td>rate, 573</td>
</tr>
<tr>
<td></td>
<td>schedule, 311, 493, 560</td>
</tr>
<tr>
<td></td>
<td>schedule converted to time, 561</td>
</tr>
<tr>
<td></td>
<td>schedule start, 306</td>
</tr>
<tr>
<td></td>
<td>thresholds, 588</td>
</tr>
<tr>
<td></td>
<td>usage, 573</td>
</tr>
<tr>
<td></td>
<td>variance analysis report (VAR), 563, 591</td>
</tr>
<tr>
<td></td>
<td>approval, 594</td>
</tr>
<tr>
<td></td>
<td>corrective action plan, 593</td>
</tr>
<tr>
<td></td>
<td>describing the problem, 592</td>
</tr>
<tr>
<td></td>
<td>EAC justification, 594</td>
</tr>
<tr>
<td></td>
<td>impact, 593</td>
</tr>
<tr>
<td></td>
<td>subcontract, 636</td>
</tr>
<tr>
<td></td>
<td>variance at completion (VAC), 560</td>
</tr>
<tr>
<td>W</td>
<td>work authorization, 538</td>
</tr>
<tr>
<td>what if schedule, 293, 295</td>
<td>inter-divisional, 631</td>
</tr>
<tr>
<td>work authorization, 538</td>
<td>requirements, 538</td>
</tr>
<tr>
<td>work breakdown structure (WBS), 626</td>
<td>work team</td>
</tr>
<tr>
<td>and work authorization, 539</td>
<td>advantages, 111, 113</td>
</tr>
<tr>
<td>contract, 57</td>
<td>alignment examples, 114</td>
</tr>
<tr>
<td>defined, 47</td>
<td>application examples, 116</td>
</tr>
<tr>
<td>development considerations, 48, 54</td>
<td>defined, 111</td>
</tr>
<tr>
<td>dictionary, 53, 605</td>
<td>lead role, 119</td>
</tr>
<tr>
<td>dictionary example, 54</td>
<td>work-around plan</td>
</tr>
<tr>
<td>examples, 48–51</td>
<td>strategies, 295</td>
</tr>
<tr>
<td>IMP/IMS cross reference, 213</td>
<td></td>
</tr>
<tr>
<td>integrating subcontract, 623</td>
<td></td>
</tr>
<tr>
<td>intersection with OBS, 91</td>
<td></td>
</tr>
<tr>
<td>level of detail, 48</td>
<td></td>
</tr>
<tr>
<td>role in estimating, 401</td>
<td></td>
</tr>
<tr>
<td>work scope crosscheck, 57</td>
<td></td>
</tr>
<tr>
<td>work definition process, 45</td>
<td></td>
</tr>
<tr>
<td>work package, 509–510, 536</td>
<td></td>
</tr>
<tr>
<td>characteristics, 509</td>
<td></td>
</tr>
<tr>
<td>examples, 511</td>
<td></td>
</tr>
<tr>
<td>level of cost collection, 549</td>
<td></td>
</tr>
<tr>
<td>work scope and schedule development, 142</td>
<td></td>
</tr>
<tr>
<td>and WBS elements, 47</td>
<td></td>
</tr>
<tr>
<td>and work authorization, 539</td>
<td></td>
</tr>
<tr>
<td>defined, 45</td>
<td></td>
</tr>
<tr>
<td>traceability, 375</td>
<td></td>
</tr>
<tr>
<td>verification, 57</td>
<td></td>
</tr>
<tr>
<td>work team advantages, 111, 113</td>
<td></td>
</tr>
<tr>
<td>alignment examples, 114</td>
<td></td>
</tr>
<tr>
<td>application examples, 116</td>
<td></td>
</tr>
<tr>
<td>defined, 111</td>
<td></td>
</tr>
<tr>
<td>lead role, 119</td>
<td></td>
</tr>
<tr>
<td>work-around plan strategies, 295</td>
<td></td>
</tr>
</tbody>
</table>
About the Author

Mr. Gary C. Humphreys has over 38 years of program management experience in both government and commercial environments, specializing in earned value management systems (EVMS) design, development, and implementation. He was the first US Army Review Team Director to conduct an EVMS Tri-Service Demonstration. As both a Team Member and Review Team Director, he has assisted, evaluated, and directed review teams leading to over 150 successful system acceptances.

He has developed a successful consulting practice operating out of Irvine, California. As the premier consultant in this field he has provided assistance in all phases of project management to over 850 clients from aerospace firms to utility companies, England's Inland Revenue Service (IRS), and Shipbuilding companies in North America, Australia, and Europe. Within the industry, no one has performed more on-site earned value cost/schedule performance work.

He was elected to the Nine Man Committee for Increasing the Cost Effectiveness of earned value and led the Fifteen Man Industry Committee to modify traditional documentation and interpretation of earned value to be more compatible with efficient, economical production/manufacturing management control techniques. As a member of the Integrated Program Management Initiative Joint Team, Mr. Humphreys received the DoD's highest acquisition award, the 1998 David Packard Excellence in Acquisition Award. He is also a recipient of the Whitey H. Driessnack Award for Outstanding Contributions to the Advancement of Performance Management.

He has served as Vice-Chair and Chair of what is now the National Defense Industrial Association (NDIA) Integrated Program Management Division (IPMD). As a direct result of his tenure as Chair, he took a fledgling committee and developed it into an influential, policy impacting committee with active membership growing to over one hundred people attending each meeting. Over 350 organizations are now participants. He was also instrumental in opening the lines of communication between the DoD's Performance Measurement Joint Executive Group (PMJEG) and industry by establishing the first dialogue interchange meetings between the two groups. It was through the NDIA IPMD that he orchestrated the first ever survey on EVMS. As a direct result of this survey's findings, the US Government conducted their own survey. These two independent surveys formed the genesis for subsequent revisions to numerous guides and reference material on EVMS.

Under his leadership, the Performance Management Association (PMA) (now the College of Performance Management (CPM)) achieved importance as a policy-influencing group. This also allowed individuals to enhance their careers in project management with active interchanges with organizations such as the DoD and NASA, as well as individuals from other companies. He initiated three international Chapters in Australia and new US Chapters. He served as leader of the Total Quality Management (TQM) Process Action Team (PAT) for streamlining business system descriptions for performance measurement and management applications. This streamlining effort saved countless wasteful actions while maintaining the quality of useful performance measurement data for decision makers.

He has been a guest and keynote speaker on a variety of performance measurement related subjects at the Air Force Institute of Technology (AFIT), Association for the Advancement of Cost Engineering International (AACE International), Certified Public Accountants (CPA) Government Contracts Conference, Defense Acquisition University (DAU), National Computer Conference (NCC) of American Federation of Information Processing Societies (AFIPS), Project Management Institute (PMI), CPM National and International Chapter meetings, and numerous software user groups.

Mr. Humphreys is a graduate of the University of California at Berkeley, with a Masters Degree in Business Administration from the University of Southern California.
He authored the first edition of *Project Management Using Earned Value* published in 2002. He was a co-author of *Project and Production Scheduling*, published in 1987. He has also written numerous articles on subjects related to project management and earned value.