The Brick Wall

1. (a) We must first examine how much budgeted work remains. The total was $\$ 10,000$ and we have earned $\$ 4,500$ through day 3 . This means that $\$ 5,500$ of work remains.
(b) Next we must decide what future performance is likely to be on this remaining work. Material costs are fixed and will not change. There is $\$ 3,500$ of remaining material costs (3.5 feet of wall). Labor costs, however, must be evaluated. To date, we have earned $\$ 2,000$ worth of labor while expending $\$ 3,000$. One way to generate an EAC would be to assume that this level of performance would continue in the future. There is a remaining Labor effort valued at $\$ 2,000$ in the budget. Since it is requiring $\$ 1.50$ of actual cost for every $\$ 1.00$ earned, we could estimate that the remaining $\$ 2,000$ would cost $\$ 2,000 \times \$ 1.50=\$ 3,000$.
(c) The final step is to add this projected cost to the cost already experienced to date. This can be expressed as a formula like this: EAC $=$ Actual cost to date + ETC, where ETC is the Estimated Cost to Complete the remaining work. Using this approach, we would estimate a total cost at completion of $\$ 5,500+\$ 3,500($ material $)+\$ 3,000$ (labor) $=\$ 12,000$. This would result in an overrun of $\$ 2,000$, twice the overrun experienced to date.

Another option would be to recognize that day 3 was an aberration because of weather. At the end of day 2 the project was precisely on schedule and on budget. So we could assume that the remaining $\$ 3,500$ of budgeted material and $\$ 2,000$ of budgeted labor work will cost exactly $\$ 5,500$. Since EAC $=$ Actual to Date + Estimate to Complete $=\$ 5,500+\$ 5,500=\$ 11,000$. This estimates an overrun of $\$ 1,000$, the same as experienced to date.

This illustrates why a RANGE of EAC values are usually generated and submitted for review, based on "best case", "worst case", and "most likely case" assumptions. The $\$ 11,000$ would likely be the "best case" value, while the "most likely" case would be based on many things. There is detailed discussion of this topic in a later chapter, "Performance Measurement Calculations and Estimates at Completion".

Given the information provided in the problem, it would appear that the most likely EAC would be $\$ 11,000$.
2. In Case A, there are 64 budgeted labor hours of work remaining (ie., 2 days $\times 8$ hours/day $\times 4$ workers) @ $\$ 31.25$ per hour. To accomplish this in the one remaining day would require 32 of those hours to be paid as overtime, or $\$ 46.88$ per hour. Therefore, remaining labor cost would be 32 hours x $\$ 31.25 /$ hour +32 hours $x \$ 46.88 /$ hour $=\$ 2,500.16$, rounded to $\$ 2,500$. Remaining material cost is $\$ 3,500$, so total remaining cost would be $\$ 6,000$. That would mean an EAC of \$11,500.
3. In Case B, it would take less than 64 labor hours because of the improved productivity. Assuming the 15% improvement, and with all hours on straight time, the $\$ 2,000$ remaining labor budget should become $\$ 1,700$. The EAC for Case B would then be $\$ 5,500+\$ 3,500+\$ 1,700=\$ 10,700$.

