TABLE OF CONTENTS

List of Figures ... xiii
Preface ... xxv
Acknowledgments .. xxix

Section 1 Earned Value Project Management and Organization .. 25

Chapter 1 Project Management Using Earned Value ... 27
What is a Project? .. 27
Managing Projects ... 28
Background ... 29
The Performance-Oriented Approach ... 30
Summary Implementation Concerns ... 32
Factors Affecting System Implementation Detail ... 32
Earned Value Management System Recognition ... 33
The Earned Value Management Process .. 33
The Process Steps ... 34
Conclusion .. 37
Review Questions .. 38

Chapter 2 Definition of Scope, Work Breakdown Structure (WBS) and WBS Dictionary 39
Defining Project Objectives .. 40
The Work Breakdown Structure (WBS) .. 41
Considerations in Developing a WBS .. 42
WBS Examples .. 42
WBS Dictionary ... 46
Other Considerations in WBS Development .. 47
The Contract Work Breakdown Structure (CWBS) ... 50
Scope Verification ... 50
Conclusion .. 51
Review Questions .. 51
Case Study 2.1 Work Breakdown Structure Part 1 ... 53
Case Study 2.2 Work Breakdown Structure Part 2 ... 59
Case Study 2.3 WBS Element Description ... 63

Chapter 3 Managing Project Risk .. 67
Introduction to Managing Project Risks .. 67
The Process Flow Diagram .. 69
Relationship of Risk Management to the Earned Value Management System 75
Development of Estimates ... 75
Quantitative Schedule Risk Analysis .. 75
Budgets .. 75
Management Reserve ... 75
Variance Analysis .. 75
Estimates at Completion ... 75
Conclusion .. 76
Review Questions .. 76
Case Study 3.1 Using the Risk Register .. 77
<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Critical Path Method Fundamentals ...</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Critical Path Method ..</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Critical Path Example ..</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Network Calculations ...</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Total Float ..</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Free Float ..</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Directed Dates ..</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>Critical Path Characteristics ..</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Driving Paths ...</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>A Final Note ...</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Conclusion ..</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Review Questions ...</td>
<td>159</td>
</tr>
<tr>
<td>Case Study 8.1</td>
<td>A More Complex Network ..</td>
<td>161</td>
</tr>
<tr>
<td>Case Study 8.2</td>
<td>CPM Network Construction ..</td>
<td>163</td>
</tr>
<tr>
<td>Case Study 8.3</td>
<td>Date, Float and Critical Path Calculation ..</td>
<td>167</td>
</tr>
<tr>
<td>Case Study 8.4</td>
<td>Constructing a Bar Chart ...</td>
<td>171</td>
</tr>
<tr>
<td>Case Study 8.5</td>
<td>Path Analysis Using Total Float ...</td>
<td>173</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Resource Loading and Leveling the Schedule ..</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Resource Loading Process ...</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Priority Rules and Strategies for Resource Leveling</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Additional Considerations ...</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Leveled Start and Finish ..</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Resource Curves ..</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Other Applications ...</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Conclusion ...</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Review Questions ...</td>
<td>182</td>
</tr>
<tr>
<td>Case Study 9.1</td>
<td>Resource Leveling ..</td>
<td>185</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Considerations for Developing a Useful, Quality Network Schedule</th>
<th>189</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Network Development Techniques: Top-Down ..</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Network Development Techniques: Bottom-Up ..</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Network Development Techniques: IMP/IMS ...</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Concerns in the Schedule Development Process ..</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Using Hammocks, Summary Activities and Grouping for Concise Reporting</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Templates ..</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Lags, Leads and Date Constraints ...</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Schedule Visibility Tasks ..</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Schedule Margin ...</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Schedule Margin Activity Method ...</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Lag Method ...</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Gap Method ..</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Baseline Finish Variance Method ...</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Resource Application ..</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Schedule Approaches ..</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Schedule Visibility Versus Risk ...</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Determining Detail ...</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>Creating and Maintaining Quality Schedules ...</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>Schedule Health Checks ...</td>
<td>207</td>
</tr>
</tbody>
</table>
Table of Contents

Fourteen Point Schedule Health Check – Correlation with GASP .. 212
Conclusion .. 213
Review Questions .. 214
Case Study 10.1 Build a Network Schedule .. 217

Chapter 11 Schedule Acceleration Techniques .. 221
The “Crashing” Procedure ... 223
An Example of Network Crashing .. 224
Other Schedule Acceleration Techniques .. 230
Conclusion .. 231
Review Questions .. 231
Case Study 11.1 Crashing the Network or “What If” .. 233

Chapter 12 Setting a Traceable Schedule Baseline ... 235
Schedule Traceability ... 235
A Solution .. 239
Defining the Schedule Baseline .. 239
Schedule Baseline Establishment .. 240
Realism and Schedule Detail ... 243
Timing of Schedule Baseline Establishment .. 243
Schedule Baseline Revisions .. 244
The Baseline Schedule Versus the Current Schedule ... 245
Conclusion .. 246
Review Questions .. 246
Case Study 12.1 Vertical and Horizontal Schedule Traceability ... 249

Chapter 13 Updating the Schedule ... 253
Successful Schedule Update Process .. 257
Additional Statusing Considerations ... 258
Methods for Addressing Out-of-Sequence Logic Status .. 258
 Retained Logic .. 259
 Progress Override .. 261
 Impact on Total Float .. 262
Conclusion .. 264
Review Questions .. 264
Case Study 13.1 Analyzing the Schedule .. 267

Chapter 14 Schedule Changes ... 269
Duration Changes ... 271
Measuring Schedule Status .. 272
Defining Significant Changes ... 272
Recording the Changes .. 272
Work-Around Plans ... 273
Baseline Changes ... 274
Conclusion .. 274
Review Questions .. 275
Case Study 14.1 Analyzing Schedule Changes .. 277

Chapter 15 Resolving Negative Float .. 281
Float Analysis at Status Update ... 283
Isolating the Cause of Float Deterioration ... 284
Impact of the Delay .. 286
Resolution Alternatives for Negative Float ... 286
Float Analysis by Project Team .. 288
Conclusion ... 290
Review Questions .. 290
Case Study 15.1 Resolving Negative Float .. 291

Chapter 16 Special Networking Considerations .. 293
Directed Dates ... 293
Level of Effort ... 303
Calendar Considerations ... 304
Conclusion ... 305
Review Questions .. 305
Case Study 16.1 A More Complex Network ... 307

Chapter 17 Schedule Risk Assessment .. 309
Reasons for Risk Analysis ... 312
Risk Definition and Use of a Risk Assessment .. 313
The CPM Approach to Schedule Risk ... 314
Probabilistic Approach to Schedule Risk ... 314
Example: Building Foundation Activity .. 315
Example: CPM Path Duration .. 315
Risk Analysis of Path Duration ... 316
Cumulative Likelihood Curves (S-Curves) ... 317
Validity of the CPM Completion Estimates .. 319
Highest Risk Path ... 319
Schedule Risk at Path Convergence ... 320
Schedule Bias .. 320
Merge Bias at Path Convergence .. 320
Directed Dates ... 321
Reducing Durations to Fit the Schedule ... 322
Fast Track Impacts .. 322
Late Start Scheduling ... 322
Early Start Scheduling ... 323
Risk Analysis Pitfalls ... 323
Risk Implementation ... 324
Schedule Risk Analysis Output ... 325
Cost Risk Analysis Output ... 326
Other Scheduling Issues ... 326
Risk Assessment Tools .. 326
PERT ... 326
Monte Carlo Approach ... 329
Cost Effective Implementation ... 329
Conclusion ... 329
Review Questions .. 330
Case Study 17.1 Making Activity Duration Distributions ... 333
Case Study 17.2 Combining Distributions Along a Path ... 335
Case Study 17.3 Schedule EAC and Path Convergence ... 341
Table of Contents

Chapter 18 Scheduling in a Performance Measurement Environment 347
- System Description .. 347
- Schedule Traceability ... 347
- Reconciliation to Time-Phased Budgets ... 349
- Reconciliation of Progress and Performance .. 350
- Contract Requirements .. 350
- Special Requirements .. 352
- Conclusion ... 353
- Review Questions .. 353
- Case Study 18.1 Schedule Traceability ... 355

Section 2 Review Quiz .. 359

Section 3 Estimating .. 367

Chapter 19 The Estimating Process ... 369
- Impact of the Estimate .. 369
- Impacts of Poor Estimating .. 370
- Prerequisites for Estimate Development ... 371
 - Guidelines ... 371
 - Work Breakdown Structure (WBS) .. 371
 - WBS Dictionary and Code of Accounts .. 371
 - Estimate Formats and Templates .. 372
- Types of Estimates ... 373
 - Conceptual Estimates ... 373
 - Preliminary Estimates .. 373
 - Detailed Estimates .. 374
 - Definitive Estimate .. 374
- Impact of “Fast Track” Projects on Estimating ... 374
- Estimate Review .. 374
 - External Reviews ... 375
 - Other Factors in Estimate Reviews ... 375
 - Team Reviews ... 375
- Estimate Development ... 376
 - The Estimating Process ... 376
 - Estimating Methods ... 378
 - Inputs for Estimate Development ... 378
 - Sources of Estimate Inputs .. 379
 - The Use of Defaults in Estimate Preparation ... 379
 - Estimating Guidelines .. 379
 - Level of Estimate Detail ... 380
 - Calculation of Indirect Costs .. 381
 - Escalation Factors and Cost Flow Development .. 381
 - Use of Other Escalation Factors .. 382
 - Estimating Operating and Manufacturing Costs .. 382
 - Software Estimating .. 383
- Learning Curves .. 384
 - Unit Learning Curve ... 384
 - Cumulative Average Learning Curve ... 385
 - The Difference between Unit Linear and Cumulative Average Linear 385
 - Determining the Learning Curve to Use.. 385
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Earned Value</td>
<td>401</td>
</tr>
<tr>
<td>21</td>
<td>The Brick Wall</td>
<td>413</td>
</tr>
<tr>
<td>22</td>
<td>Measuring Accomplishment</td>
<td>423</td>
</tr>
<tr>
<td>23</td>
<td>Establishing the Performance Measurement Baseline</td>
<td>445</td>
</tr>
</tbody>
</table>

Section 4 Earned Value

- Typical Learning Curve Values: 385
- Impacts to Learning Curves: 386
- Estimate Traceability: 386
- Conclusion: 388
- Review Questions: 389
- Case Study 19.1 Assessing the Estimate: 391
- Case Study 19.2 Estimate Modification: 393
- Case Study 19.3 Estimate History: 397

Chapter 20 Earned Value

- The Concept: 405
- The Earned Value Process: 408
- The Value of Earned Value: 408
- Conclusion: 409
- Review Questions: 409
- Case Study 20.1 The Importance of Earned Value: 411

Chapter 21 The Brick Wall

- The Brick Wall Example: 413
- Earned Value Brick Wall: 415
- Conclusion: 418
- Review Questions: 419
- Case Study 21.1 The Brick Wall: 421

Chapter 22 Measuring Accomplishment

- Work Packages: 423
- Typical Work Packages: 425
- Discrete Effort: 425
 - Milestone Definition: 426
 - Incremental Milestone Technique: 428
 - 50/50 Technique: 429
 - 0/100 Technique: 430
 - Units Complete Technique: 430
 - Equivalent Units Technique: 432
 - Percent Complete Technique: 434
- Apportioned Effort: 435
- Level of Effort: 436
- Other Earned Value Techniques: 436
- When is Earned Value Credited?: 437
- Other Comments: 437
- Conclusion: 438
- Review Questions: 438
- Case Study 22.1 Control Account Plan Exercise 1: 441

Chapter 23 Establishing the Performance Measurement Baseline

- Performance Measurement Baseline Development: 445
- Rolling Wave Planning: 447
- Performance Measurement Baseline Structure: 449
Variance Analysis Reports ... 503
 Heading Information/Earned Value Data... 503
 Problem Analysis.. 504
 Impact .. 505
 Corrective Action Plan.. 505
 Estimate at Completion Justification.. 506
 Approvals.. 506
Conclusion ... 506
Review Questions .. 506
Case Study 26.1 Calculation of Cost and Schedule Variances............. 509

Chapter 27 Baseline Revisions and Change Control................................. 511
 Change Control.. 511
 Types and Causes of Changes... 511
 Elements of a Change Control Program ... 513
 How to Control Changes... 513
 Change Control and the Baseline... 514
 Baseline Changes at the Control Account Level................................. 515
 Incorporating Changes into the PMB... 516
 Detailed Tracking of Changes... 516
 Authorized Unpriced Work... 518
 Internal Replanning... 520
 Stop Work Orders... 521
 Rubber Baseline.. 521
Conclusion ... 522
Review Questions .. 522
Case Study 27.1 Contract Budget Base Log .. 525

Chapter 28 Subcontract Management ... 531
 Definition of Subcontracts... 531
 Subcontract Flowdown Requirements... 532
 Subcontract Requests for Proposals... 533
 Subcontract Type.. 534
 Subcontractor Reporting Requirements.. 535
 Integrating the Subcontractor WBS... 535
 Integrating the Schedule... 536
 Post Award Baseline Establishment.. 537
 Establishing the Schedule Baseline.. 537
 Establishing the Budget Baseline... 537
 Prime Contractor Considerations for Subcontracts without EVMS Requirements… 540
 Cost Reimbursable ... 540
 Firm Fixed Price (FFP)... 540
 Time and Materials (T&M)... 541
 Technical Services... 541
 Additional Considerations When Planning Subcontract Budgets........... 541
 Factoring Subcontract Budgets... 542
 Special Organizational Situations... 543
 Inter-Divisional Work Authorization (IDWA)..................................... 543
 Badgeless Organizations... 543
 Revisions... 544
LIST OF FIGURES

Chapter 1 Project Management Using Earned Value ... 27
 Figure 1-1 Shocking Surprises ... 30
 Figure 1-2 Budget Plan vs. Actual Cost .. 30
 Figure 1-3 Overrun or Ahead of Schedule? ... 31
 Figure 1-4 Underrun or Behind Schedule? .. 31
 Figure 1-5 Significant Overrun or Accelerated Schedule? .. 31
 Figure 1-6 A Performance Oriented Approach Provides Better Visibility 32
 Figure 1-7 Cost and Schedule Impacts ... 32
 Figure 1-8 Earned Value Project Management: The Process .. 35

Chapter 2 Definition of Scope, Work Breakdown Structure (WBS) and WBS Dictionary ... 39
 Figure 2-1 Earned Value Project Management: The Process .. 40
 Figure 2-2 600 Megawatt WBS .. 42
 Figure 2-3 Boiler Plant Equipment WBS ... 43
 Figure 2-4 Coal Handling System WBS ... 43
 Figure 2-5 Storage and Preparation WBS .. 43
 Figure 2-6 Sewer Treatment Plant WBS .. 44
 Figure 2-7 DOE Project Summary WBS .. 44
 Figure 2-8 Sample Project WBS Software Development Project 45
 Figure 2-9 Sample Project WBS Software Development Project Details 45
 Figure 2-10 CWBS Dictionary and Contract ... 46
 Figure 2-11 Element of Cost Orientation .. 47
 Figure 2-12 Phase Orientation ... 48
 Figure 2-13 Engineering/Design WBS - Example 1 .. 49
 Figure 2-14 Engineering/Design WBS - Example 2 .. 49
 Figure 2-15 Product - User Mapping .. 50

Chapter 3 Managing Project Risk .. 67
 Figure 3-1 Earned Value Project Management: The Process .. 68
 Figure 3-2 Managing Project Risks: The Process ... 69
 Figure 3-3 Sample Risk Register .. 71
 Figure 3-4 Widget Project Risk Register .. 73

Chapter 4 Relating Organizations, Responsibility, and Work Scope 79
 Figure 4-1 Earned Value Project Management: The Process .. 80
 Figure 4-2 Functional Organization ... 81
 Figure 4-3 Project Organization .. 81
 Figure 4-4 Composite Organization ... 81
 Figure 4-5 Responsibility Assignment Matrix (RAM) .. 82
 Figure 4-6 Responsibility Assignment Matrix and Control Account Structure 83
 Figure 4-7 Control Account Example 1 .. 84
 Figure 4-8 Control Account Example 2 .. 84
 Figure 4-9 Control Account Example 3 .. 85
 Figure 4-10 Control Account Example 4 .. 85

Chapter 5 Work Teams .. 95
 Figure 5-1 Earned Value Management: The Process .. 96
 Figure 5-2 Typical Responsibility Matrix - Functional Alignment 99
 Figure 5-3 Potential Work Team Alignment - 1 ... 99
 Figure 5-4 Potential Work Team Alignment - 2 ... 100
Figure 5-5 Potential Work Team Alignment - 3 ... 101
Figure 5-6 Work Team Application - Example 1 ... 101
Figure 5-7 Work Team Application - Example 2 ... 102
Figure 5-8 Work Team Application - Example 3 ... 102

Chapter 6 What is Scheduling? Schedule Types .. 121
Figure 6-1 Earned Value Project Management: The Process 122
Figure 6-2 Planning and Scheduling ... 122
Figure 6-3 Gantt Chart .. 126
Figure 6-4 Milestone Chart .. 127
Figure 6-5 Bar Chart ... 127
Figure 6-6 Combination Chart ... 128
Figure 6-7 Modified Bar/Milestone Chart ... 128
Figure 6-8 Process Flowchart .. 129
Figure 6-9 Set Back Chart .. 129
Figure 6-10 Line of Balance Chart .. 129
Figure 6-11 Network Diagrams ... 130

Chapter 7 Introduction to Network Logic Development ... 137
Figure 7-1 Earned Value Project Management: The Process 138
Figure 7-2 Planning and Scheduling ... 138
Figure 7-3 PDM Networks .. 139
Figure 7-4 Finish to Start .. 139
Figure 7-5 Finish to Finish ... 140
Figure 7-6 Start to Start .. 140
Figure 7-7 Start to Finish ... 141
Figure 7-8 Time-Phased Diagrams - Variable Box Length ... 142
Figure 7-9 Time-Phased Bar Chart .. 143

Chapter 8 Critical Path Method Fundamentals ... 147
Figure 8-1 Earned Value Project Management: The Process 148
Figure 8-2 Planning and Scheduling ... 148
Figure 8-3 Critical Path ... 149
Figure 8-4 Standard Notation .. 150
Figure 8-5 Forward Pass (Activity Early Dates) ... 151
Figure 8-6 Forward Pass (Activity Relationship Early Dates) 151
Figure 8-7 Forward Pass (Early Dates - Converging Paths) 151
Figure 8-8 Forward Pass .. 151
Figure 8-9 Backward Pass (Activity Late Dates) .. 152
Figure 8-10 Backward Pass (Activity Relationship Late Dates) 152
Figure 8-11 Backward Pass (Late Dates - Converging Paths) 152
Figure 8-12 Backward Pass ... 152
Figure 8-13 Early, Late Dates and Total Float - the Critical Path 153
Figure 8-14 Total Float as a Shared Value .. 154
Figure 8-15 Free Float Calculation .. 155
Figure 8-16 Total and Free Float ... 155
Figure 8-17 Impact of Directed Finish Date - Negative Float 156
Figure 8-18 Impact of Directed Finish Date - Positive Float 157

Chapter 9 Resource Loading and Leveling the Schedule ... 175
Figure 9-1 Earned Value Project Management: The Process 176
Figure 9-2 Planning and Scheduling ... 176
Figure 9-3 Resource Profile ... 177
Chapter 10 Considerations for Developing a Useful, Quality Network Schedule

- Figure 10-1 Earned Value Project Management: The Process
- Figure 10-2 Planning and Scheduling
- Figure 10-3 Top Level Schedule - Contractual Milestones
- Figure 10-4 “Unit A” Top Level Schedule
- Figure 10-5 “Unit A” Widgets 1 and 2 Engineering Schedule
- Figure 10-6 “Unit A” Widget 1 Engineering Schedule
- Figure 10-7 Integrated Master Plan for the Widget Project
- Figure 10-8 Coding Relationship Between WBS, IMP, IMS
- Figure 10-9 Hammock
- Figure 10-10 Summaries Using Code Fields
- Figure 10-11 Grouping Facility Showing Total Float by CAM
- Figure 10-12 Templates
- Figure 10-13 Legend for the Examples
- Figure 10-14 Finish to Start with Lag
- Figure 10-15 Start to Start with Lag
- Figure 10-16 Finish to Finish with Lag
- Figure 10-17 Schedule Margin Using Buffer Activity
- Figure 10-18 Qualitative Selection Criteria for Schedule Detail
- Figure 10-19 Missing Logic - Goal: 5% or Less
- Figure 10-20 Leads - Goal: 0%
- Figure 10-21 Lags - Goal: 5% or Less
- Figure 10-22 Relationship Goals
- Figure 10-23 Hard Constraints - Goal: 5% or Less
- Figure 10-24 High Float of 44 Working Days or More - Goal: 5% or Less
- Figure 10-25 Negative Float - Goal: 5% or Less
- Figure 10-26 Durations Greater than 44 Working Days - Goal: 5% or Less
- Figure 10-27 Invalid Dates - Goal: 0%
- Figure 10-28 Missing Resources on Activities with Durations of 1 Day or More - Goal: 0%
- Figure 10-29 Missed Activities - Goal: < 5%
- Figure 10-30 Critical Path Test, Before and After
- Figure 10-31 CPLI Graphic Highlighting the .95 Threshold
- Figure 10-32 Baseline Execution Index
- Figure 10-33 Health Check/GASP Correlation

Chapter 11 Schedule Acceleration Techniques

- Figure 11-1 Earned Value Project Management: The Process
- Figure 11-2 Planning and Scheduling
- Figure 11-3 Activity “Crashing” Concept
- Figure 11-4 “Crashing” a Network - An Example
- Figure 11-5 Step 1 and Step 2 - “6 Weeks”
- Figure 11-6 Step 3 - Identify Crash Time and Crash Costs for Each Activity
- Figure 11-7 Cost of Crashing Activity “A”
- Figure 11-8 Step 4
- Figure 11-9 Step 5 and Step 6
- Figure 11-10 Step 7
Figure 16-3 Start Not Earlier Than Constraint Impact .. 295
Figure 16-2 Planning and Scheduling .. 294
Figure 16-1 Earned Value Project Management: The Process ... 294

Chapter 12 Setting a Traceable Schedule Baseline ... 235
Figure 12-1 Earned Value Project Management: The Process ... 236
Figure 12-2 Planning and Scheduling .. 236
Figure 12-3 Horizontal Traceability Between Same Level of Detail .. 237
Figure 12-4 Vertical Traceability Between Different Levels of Detail .. 237
Figure 12-5 Milestones .. 238
Figure 12-6 Vertical Traceability Coding Schema ... 238
Figure 12-7 Baseline Change Request .. 240

Chapter 13 Updating the Schedule .. 253
Figure 13-1 Earned Value Project Management: The Process ... 254
Figure 13-2 Planning and Scheduling .. 254
Figure 13-3 Calendar ... 255
Figure 13-4 Impact of Status on Duration and Float .. 257
Figure 13-5 PDM Network .. 259
Figure 13-6 Schedule Bar Chart .. 259
Figure 13-7 Out-of-Sequence Progress - Retained Logic Option (PDM Network) .. 260
Figure 13-8 Out-of-Sequence Progress - Retained Logic Option (Bar Chart) .. 260
Figure 13-9 Out-of-Sequence Progress - Progress Override Option (PDM Network) ... 261
Figure 13-10 Out of Sequence Progress - Progress Override Option (Bar Chart) .. 262
Figure 13-11 Impact on Total Float - Sample Network .. 263
Figure 13-12 Impact on Total Float - Retain Logic Option .. 263
Figure 13-13 Impact on Total Float - Progress Override Option ... 264

Chapter 14 Schedule Changes .. 269
Figure 14-1 Earned Value Project Management: The Process ... 270
Figure 14-2 Planning and Scheduling .. 270

Chapter 15 Resolving Negative Float ... 281
Figure 15-1 Earned Value Project Management: The Process ... 282
Figure 15-2 Planning and Scheduling .. 282
Figure 15-3 Trend in Float by Path .. 284
Figure 15-4 Baseline vs. Current - Date and Duration Variances ... 285
Figure 15-5 Resolution Alternatives .. 288
Figure 15-6 Analysis - Most Critical Activities .. 289
Figure 15-7 Analysis - Number of Critical Activities .. 289
Figure 15-8 Analysis - Number of Activities On or Behind Schedule .. 289

Chapter 16 Special Networking Considerations .. 293
Figure 16-1 Earned Value Project Management: The Process ... 294
Figure 16-2 Planning and Scheduling .. 294
Figure 16-3 Start Not Earlier Than Constraint Impact .. 295
Figure 16-4 Delayed Activity Using a Milestone .. 296
Figure 16-5 Start Not Earlier Than Constraint Bypassed ... 296
Figure 16-6 Delay Using a Schedule Visibility Task .. 296
Figure 16-7 Small Project Bar Chart 321 ... 297
Figure 16-8 Start Not Earlier Than Constraint .. 297
List of Figures

Chapter 17 Schedule Risk Assessment ... 309
Figure 17-1 Earned Value Project Management: The Process 310
Figure 17-2 Planning and Scheduling ... 310
Figure 17-3 Risk Assessment with CPM Network ... 311
Figure 17-4 Risk Assessment with CPM ... 312
Figure 17-5 Risk Analysis of the Project .. 312
Figure 17-6 Building Foundation Activity .. 315
Figure 17-7 Most Likely and Average Durations ... 315
Figure 17-8 Low and High Possible Durations .. 316
Figure 17-9 Risk Analysis of Path Duration Example .. 316
Figure 17-10 Constructing the S-Curve ... 317
Figure 17-11 Likelihood of Slippages and Contingencies 318
Figure 17-12 Cumulative Distribution for Path A .. 318
Figure 17-13 Validity of CPM Estimates .. 319
Figure 17-14 Identifying the Highest Risk Path ... 320
Figure 17-15 Identify the Highest Risk Path ... 320
Figure 17-16 Merge Bias at Convergence .. 321
Figure 17-17 Direct Dates ... 322
Figure 17-18 Reducing Durations to Fit the Schedule .. 322
Figure 17-19 Two Path Example ... 323
Figure 17-20 Late Starts on Path B ... 323
Figure 17-21 Early Starts on Path B ... 323
Figure 17-22 Schedule Risk Histogram .. 325
Figure 17-23 Cost Risk Histogram .. 325
Figure 17-24 Standard Deviation .. 327
Figure 17-25 Six Activity Network Example ... 327
Figure 17-26 PERT Calculations ... 328
Figure 17-27 Distribution Curve for Path U-V-X-Z .. 328
Figure 17-28 Distribution Curve for Path U-W-Y-Z .. 328

Chapter 18 Scheduling in a Performance Measurement Environment 347
Figure 18-1 Earned Value Project Management: The Process 348
Figure 18-2 Planning and Scheduling ... 348
Figure 18-3 Schedule Integration - Schedules Must Tier 351
Figure 18-4 WBS Levels vs. Schedule Levels .. 351

Chapter 19 The Estimating Process ... 369
Figure 19-1 Earned Value Project Management: The Process 370
Figure 19-2 Levels of Estimate Detail 1 .. 372
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 19-3</td>
<td>Levels of Estimate Detail 2</td>
<td>373</td>
</tr>
<tr>
<td>Figure 19-4</td>
<td>The Estimating Process</td>
<td>376</td>
</tr>
<tr>
<td>Figure 19-5</td>
<td>Inputs for Estimate Development</td>
<td>378</td>
</tr>
<tr>
<td>Figure 19-6</td>
<td>Estimate Outputs</td>
<td>379</td>
</tr>
<tr>
<td>Figure 19-7</td>
<td>Estimate Development Example</td>
<td>379</td>
</tr>
<tr>
<td>Figure 19-8</td>
<td>Level of Detail Summarization</td>
<td>380</td>
</tr>
<tr>
<td>Figure 19-9</td>
<td>Estimate History Form ($ x 1000)</td>
<td>388</td>
</tr>
<tr>
<td>Chapter 20 Earned Value</td>
<td></td>
<td>403</td>
</tr>
<tr>
<td>Figure 20-1</td>
<td>Earned Value Project Management: The Process</td>
<td>404</td>
</tr>
<tr>
<td>Figure 20-2</td>
<td>Budget Plan vs. Actuals</td>
<td>405</td>
</tr>
<tr>
<td>Figure 20-3</td>
<td>Overrun or Ahead of Schedule?</td>
<td>405</td>
</tr>
<tr>
<td>Figure 20-4</td>
<td>Planned Accomplishment</td>
<td>406</td>
</tr>
<tr>
<td>Figure 20-5</td>
<td>Earned Value of a Task</td>
<td>406</td>
</tr>
<tr>
<td>Figure 20-6</td>
<td>Planned vs. Actual Accomplishment</td>
<td>406</td>
</tr>
<tr>
<td>Figure 20-7</td>
<td>What's Been Accomplished? What did it Cost?</td>
<td>406</td>
</tr>
<tr>
<td>Figure 20-8</td>
<td>Earned Value is a Good Approximation</td>
<td>407</td>
</tr>
<tr>
<td>Figure 20-9</td>
<td>Cost Variance</td>
<td>407</td>
</tr>
<tr>
<td>Figure 20-10</td>
<td>Schedule Variance</td>
<td>407</td>
</tr>
<tr>
<td>Figure 20-11</td>
<td>Cost and Schedule Impacts</td>
<td>408</td>
</tr>
<tr>
<td>Chapter 21 The Brick Wall</td>
<td></td>
<td>413</td>
</tr>
<tr>
<td>Figure 21-1</td>
<td>Budget vs. Actuals</td>
<td>413</td>
</tr>
<tr>
<td>Figure 21-2</td>
<td>Four Days of Bricking</td>
<td>414</td>
</tr>
<tr>
<td>Figure 21-3</td>
<td>Budget vs. Actual Day Five</td>
<td>414</td>
</tr>
<tr>
<td>Figure 21-4</td>
<td>Planning Using Earned Value</td>
<td>415</td>
</tr>
<tr>
<td>Figure 21-5</td>
<td>Detailed Planning for Day One Using Earned Value</td>
<td>415</td>
</tr>
<tr>
<td>Figure 21-6</td>
<td>Earned Value After Day One</td>
<td>416</td>
</tr>
<tr>
<td>Figure 21-7</td>
<td>Earned Value Status Day One</td>
<td>416</td>
</tr>
<tr>
<td>Figure 21-8</td>
<td>Earned Value Status Day Two</td>
<td>417</td>
</tr>
<tr>
<td>Figure 21-9</td>
<td>Earned Value Status Day Three</td>
<td>417</td>
</tr>
<tr>
<td>Figure 21-10</td>
<td>Earned Value Status Day Four</td>
<td>417</td>
</tr>
<tr>
<td>Figure 21-11</td>
<td>Earned Value Status Day Five</td>
<td>417</td>
</tr>
<tr>
<td>Figure 21-12</td>
<td>Earned Value Graphics</td>
<td>418</td>
</tr>
<tr>
<td>Chapter 22 Measuring Accomplishment</td>
<td></td>
<td>423</td>
</tr>
<tr>
<td>Figure 22-1</td>
<td>Earned Value Project Management: The Process</td>
<td>424</td>
</tr>
<tr>
<td>Figure 22-2</td>
<td>Incremental Milestone - Planning</td>
<td>428</td>
</tr>
<tr>
<td>Figure 22-3</td>
<td>Incremental Milestone - Status</td>
<td>428</td>
</tr>
<tr>
<td>Figure 22-4</td>
<td>50% / 50% - Planning</td>
<td>429</td>
</tr>
<tr>
<td>Figure 22-5</td>
<td>50% / 50% - Status</td>
<td>429</td>
</tr>
<tr>
<td>Figure 22-6</td>
<td>0% / 100% - Planning</td>
<td>430</td>
</tr>
<tr>
<td>Figure 22-7</td>
<td>0% / 100% - Status</td>
<td>430</td>
</tr>
<tr>
<td>Figure 22-8</td>
<td>Units Complete - Planning</td>
<td>431</td>
</tr>
<tr>
<td>Figure 22-9</td>
<td>Units Complete - Status</td>
<td>431</td>
</tr>
<tr>
<td>Figure 22-10</td>
<td>Percent Complete - Planning</td>
<td>434</td>
</tr>
<tr>
<td>Figure 22-11</td>
<td>Percent Complete - Status</td>
<td>434</td>
</tr>
<tr>
<td>Figure 22-12</td>
<td>Apportioned Effort - Planning and Status</td>
<td>435</td>
</tr>
<tr>
<td>Figure 22-13</td>
<td>Level of Effort (LOE) - Planning</td>
<td>436</td>
</tr>
<tr>
<td>Figure 22-14</td>
<td>Level of Effort (LOE) - Status</td>
<td>436</td>
</tr>
<tr>
<td>Chapter 23 Establishing the Performance Measurement Baseline</td>
<td></td>
<td>445</td>
</tr>
<tr>
<td>Figure 23-1</td>
<td>Earned Value Project Management: The Process</td>
<td>446</td>
</tr>
</tbody>
</table>
List of Figures

Chapter 24 Collecting Actual Cost ... 459
 Figure 24-1 Earned Value Project Management: The Process 460
 Figure 24-2 Cost Element Examples .. 460
 Figure 24-3 Data Source Matrix ... 461
 Figure 24-4 Accounting Subsystem Interfaces with Project Management ... 462
 Figure 24-5 Material Accounting ... 464
 Figure 24-6 Material Measurement .. 465
 Figure 24-7 Matrix of Indirect Costs ... 466
 Figure 24-8 Indirect Analysis - An Example .. 467

Chapter 25 Performance Measurement Calculations and Estimates at Completion .. 473
 Figure 25-1 Earned Value Project Management: The Process 474
 Figure 25-2 Mixing Variances ... 475
 Figure 25-3 Graphical Schedule Conversion ... 475
 Figure 25-4 Trend Analysis ... 476
 Figure 25-5 Trend Analysis with Percentage Threshold 476
 Figure 25-6 Estimate at Completion ... 476
 Figure 25-7 To Complete Performance Index (TCPI)_{EAC} 479
 Figure 25-8 Performance Indices Comparison .. 479
 Figure 25-9 Range of Estimates at Completion 481
 Figure 25-10 Performance Measurement Data Concern 483
 Figure 25-11 Combining SPI and TF Data .. 483
 Figure 25-12 Combining SPI and CPI (Labor Accounts) 484
 Figure 25-13 Performance Report - Work Breakdown Structure 485
 Figure 25-14 Performance Report - Project Organization 485
 Figure 25-15 Material Cost Variance Components 487
 Figure 25-16 Labor Cost Variance Components 487
 Figure 25-17 Cost and Schedule Impacts ... 487

Chapter 26 Variance Analysis and Corrective Action 499
 Figure 26-1 Earned Value Project Management: The Process 500
 Figure 26-2 Data Traceability ... 501
 Figure 26-3 Variance Analysis Report ... 504
 Figure 26-4 Corrective Action Log ... 506

Chapter 27 Baseline Revisions and Change Control 511
 Figure 27-1 Earned Value Project Management: The Process 512
 Figure 27-2 Change Control ... 514
 Figure 27-3 Effect of Changes ... 515
 Figure 27-4 Control Account 1 ... 515
 Figure 27-5 Control Account 1 Closeout ... 515
 Figure 27-6 Control Account 1A .. 516
 Figure 27-7 Contract Budget Base Log .. 517

List of Figures

Figure 27-8 Baseline Change Request ... 519
Figure 27-9 Internal Replanning ... 521
Figure 27-10 Rubber Baseline ... 522

Chapter 28 Subcontract Management ... 531
Figure 28-1 Earned Value Project Management: The Process 532
Figure 28-2 Subcontract Risk Factor ... 533
Figure 28-3 Relationship of Risk to Contract Type ... 533
Figure 28-4 Subcontract EVM System and Reporting Requirements 534
Figure 28-5 Prime Contract/Subcontract Integration (1 of 2) 536
Figure 28-6 Prime Contract/Subcontract Integration (2 of 2) 536
Figure 28-7 Planning the Definitized Subcontract ... 538
Figure 28-8 BCWS Time Phasing for Prime Control Accounts (1 of 2) 538
Figure 28-9 BCWS Time Phasing for Prime Control Accounts (2 of 2) 538
Figure 28-10 Allocation Example .. 539
Figure 28-11 The Subcontractor’s MR and UB ... 539
Figure 28-12 Prime Contractor Establishes BCWS Based on Subcontractor Submittals ... 540
Figure 28-13 Factoring Objectives ... 542
Figure 28-14 Badgeless Organization RAM ... 544
Figure 28-15 Class I Change Cycle ... 545
Figure 28-16 Class II Change Cycle ... 545
Figure 28-17 Over Target Baseline and Schedule ... 547

Chapter 29 Implementation of the Project Management Process 559
Figure 29-1 Earned Value Project Management: The Process 560
Figure 29-2 Design and Implementation of the Project Management System 561
Figure 29-3 Baseline Schedule Development Flowchart 562
Figure 29-4 Performance Measurement Flowchart 565
Figure 29-5 Implementation Schedule ... 568
This book is about integrated project management. It is not about all aspects of project management but it includes some of the most important aspects. All projects contain three elements; scope of work, a scheduled time frame in which the work must be accomplished, and a budget to perform the work. Integrating these three elements using Earned Value Management provides the basis for effective project management. The planning, control, and management of projects can be improved through the use of Earned Value.

This book is intended for anyone who desires to know more about project management, planning and control and how to improve these processes through the use of Earned Value. Intended readers include project and program managers, project control personnel, project technical personnel, procurement activity personnel and the stakeholders and owners of projects. While it is intended for a wide range of readers, each is assumed to have a basic familiarity with the requirements and the disciplines of project management. Readers new to this arena would be well advised to supplement this reading with a basic but general work on Project Management.

The material in this book has been drawn from the collective experiences of the authors and many of the professional personnel of Humphreys & Associates, Inc., consultants in project and program management for over forty years. This material has been presented in seminars and workshops, and successfully used in assisting our clients in the United States and around the world. While introductory theory is explained, time tested samples are provided. Samples are presented from specific industries. Please do not conclude that a sample does not apply to those of you in the construction, software, or other industries.

In order to facilitate the learning experience, the topics covered are linked together in a process flowchart. This flowchart is displayed at the beginning of each chapter and the elements of the flowchart addressed in that chapter are highlighted. In addition, the chapters have been grouped into Sections. Each Section represents a major topic in the planning and control process; Organization, Scheduling, Estimating, and Earned Value. These are supplemented by a Section on Implementation of the Project Management Process. Finally, there is a Conclusion and an Appendix. The Appendix contains the Earned Value analysis formulas, abbreviations and acronyms, the glossary, the bibliography and index.

To further aid the reader, a series of review questions are found at the conclusion of each chapter. At the end of each Section there is a Section Quiz. Finally, the majority of chapters contain one or more Case Studies. These are practical exercises that have been drawn from our consulting experiences and presented in Humphreys & Associates, Inc. seminars and workshops. The Case Studies have been found to reinforce the participant’s learning. To obtain the answers to the Chapter Review Questions, the Section Quizzes and suggested solutions to the Case Studies, please call the Humphreys & Associates, Inc’s. office at (714) 685-1730.
CHAPTER 1

What is a Project?

Before delving into the intricacies of the earned value management process, projects and earned value management need to be defined first. A project consists of a defined objective to develop or produce a new product, capability, or to expand capacity within a specified time frame and budget. Examples of projects include large capital-intensive efforts such as highway construction, new commercial buildings, power plants and petrochemical plants, water treatment plants, flood control, dams, bridges, hospitals, schools, prisons, and churches. These are the obvious, highly visible projects.

They are not the only types of projects as new product development is also a project. A new automobile, engine, or communication satellite is a project. Other projects include research and development, definition of new information systems, design and installation of communication systems, creation of new software programs, and computer hardware advances.

Projects are so widespread that it is difficult to get through the day without being involved in some way with a project, whether it is sitting in traffic while road work continues, finding a more efficient information flow for office communication, or managing a home improvement.

A well conceived project could also be characterized as any endeavor that has a well-defined scope of work and optimistic yet achievable schedule and cost objectives.

The words “project” and “program” are sometimes used interchangeably in industry, resulting in some confusion. A program is made up of individual projects to be accomplished. For example, the inertial guidance system for an aircraft may be a separate project on a program. Because projects and programs share the same characteristics they can be treated in a similar manner. For that reason, throughout this text, the term “project” will be used generically to refer to both projects and programs.

Now that project has been defined, what is earned value management? It is the process of defining and controlling the project so that defined objectives are met. The controlling aspect includes scope control, schedule control, and budget control. It also includes the process of identifying and minimizing risk. There are many aspects involved in earned value management, including development of the Earned Value Management System. An Earned Value Management System is a set of processes and tools used to facilitate the management of a project.

Objectives of this Chapter:

1. Define “project” and project management.
2. Describe the performance-oriented approach using an Earned Value Management System and explain why it is superior to actual versus budget comparisons.
3. Discuss factors affecting the appropriate level of detail for earned value implementation.
4. Introduce the process flowchart for the earned value project management process.
Managing Projects

Many projects result in highly successful completions. Successful projects contain many common characteristics: they were well defined and organized, had a closely monitored work scope, had optimistic yet achievable schedule and budget from the time of initiation, and were closely monitored and managed. Many projects have been successful for another reason: they benefited from mistakes on other projects. The primary factor observed on successfully managed projects is managing performance. The common thread throughout all of the topics in this textbook is exactly that.

The approaches and techniques that will be discussed have a performance measurement orientation, because the better something can be measured, the better it can be managed.

In a performance measurement system, cost and schedule targets are assigned to each activity planned in a project and to the project itself; progress (performance) is measured against these targets. Deviations from the activity targets and the causes of the deviations are identified and action is taken to minimize adverse consequences to the project.

Projects require expertise from many disciplines. Close coordination and communication are essential parts of successful execution of a project. To achieve these, a separate “project team” is typically assembled for accomplishing the project’s scope of work. This team is organized using individuals from various disciplines such as accounting, purchasing, engineering, manufacturing, testing, operations, finance, contracts, construction, project controls, and may also include subcontractors. Some people provide part time support to a project. These might include any of those mentioned above and others such as the legal department, record retention, financial services, and executive management.

The job of managing all of these organizations and people is typically assigned to a full time senior individual who is designated as the project manager. A project manager should meet several specific qualifications: many years of experience in the type of project being managed to be technically qualified; a degree to be academically qualified; and stamina to be physically qualified. In addition, project managers must have good processes and tools to effectively manage the people and the project.

The project manager must orchestrate the entire project to achieve the technical, schedule, and cost objectives. If a project is an internal endeavor, then a project manager’s role is to manage the internal departmental interfaces and contractors, and possibly other owners and customers, in addition to all of the internal staff.

Unlike normal functional organizations, a project has a specific duration. Even as a project is initiated, its purpose is to accomplish defined objectives and disband. A project team’s job is to quickly accomplish the technical scope of work, resource as efficiently as possible, and then move on to the next project. The project manager’s job is, therefore, inherently complex and challenging. Besides the interfaces that must be managed on a daily basis, he or she must often be a motivational expert since the many players involved may have different goals. For many reasons, a project manager has a great need for accurate status information. Only with reliable indication of project status can concerns be surfaced early enough to allow corrective action, preventing potential concerns from becoming real concerns that adversely impact technical, schedule, and cost objectives.

Examples used throughout this text are extracted from actual experiences. Frequently it is easier to illustrate a concept by showing what can or will happen if certain fundamentals are ignored than what happens if they are followed. If the principles in this text are followed, there is a good probability of executing a well-managed project. If they are ignored, unpleasant, career-limiting, unsuccessful experiences can occur.

Depending on project risk, project duration, and cost, (technical, schedule, and cost), certain aspects may be implemented less stringently. The principles do not change. It is still necessary to define the scope of work, have a plan for accomplishing the work, and to manage the plan. However, the level of detail of the implementation can vary. Unsuccessful applications of these principles have also happened when organizations went overboard on the level of detail of implementation. If common sense is forgotten, it is possible to create a management system that requires so much effort.
that it requires an extensive staff just to provide the production and distribution of data. The cost of the management system is then not worth the additional insight received regarding project status.

The earned value management tools that are recommended in this book have been effectively used to improve management on a multitude of projects. By selectively employing tools, the practitioner will improve management on current and future projects and thus, the prospects for project success.

There are several other topics related to earned value management that are not directly covered. These include contract administration, project administration, and material and subcontract management. These are, however, incorporated within the discussions of related subjects generally performed by these functions.

The contract type has an impact on the extent of earned value management implementation, but all of the basic information is still necessary to ascertain project status regardless of the contracting arrangement. Experience shows that too much attention is placed on the type of contract rather than incorporating all of the information, but at a different level of detail.

The human aspects of earned value management must not be forgotten either. As mentioned before, the project manager needs to be a motivational expert. The project manager also needs a strong supporting staff. No single person can successfully perform all of the work involved in a major project. He or she must rely on the support of many others. This makes the project a team effort. Even the best systems will be less effective in the hands of individuals who do not cooperate with each other and do not work towards a common goal. An underlying assumption is that effective management tools will facilitate better management of a project and minimize the confusion that results from a project that is not well defined and planned.

Background

In the past few decades, many large projects in numerous industries experienced significant schedule delays and cost overruns. Nuclear power projects stretched for years beyond their original schedule and more than tripled in cost. Software development projects in most companies required so much lead-time that the intended users had to find alternative ways of accomplishing their goals. In other cases, competitors beat software development firms to the marketplace and millions of dollars were wasted. Water treatment and sewer treatment plants soared in cost, with immediate impact on the consumer’s water bill. Research and development projects and military projects were cancelled because of continually escalating schedule and cost projections. The U.S. auto industry suffered from a perceived lack of quality and unit prices increased. Many of these cases became highly visible to a large number of people. For the project managers, the owners, and customers of these projects, this was not the objective envisioned in the project plan. How did this happen?

Causes were both internal and external. Scope changes occurred without being recognized and incorporated into a revised plan for accomplishing the work. Customer needs changed, sometimes because of a delay in finishing a product, thus resulting in obsolescence. Delays in material delivery occurred without properly reflecting the impact to other work activities. Regulations changed, frequently affecting the time needed to acquire permits or authority to proceed. Lack of coordination between contributing groups meant delays because of missing information, design or otherwise. When these and other disruptions occurred, resulting schedule slippage had large cost impacts because of high rates of escalation. Every delay was penalized with a significant negative economic consequence.

Typically a domino effect is observed. First, a technical problem occurs. This is followed by a negative schedule variance and ultimately a negative cost variance. Sometimes the dominos fall very fast, but problems could evolve over months.

Regardless of the source of difficulty, the underlying problem was that impacts were not recognized quickly enough when conditions changed. In some cases, project managers were ignoring variances from the plan and failing to take action because they did not believe the variances were real. In others, they were not informed well enough about the variances. The situation was much like that shown in Figure 1-1.
In Figure 1-1, the Estimate at Completion (EAC) is below budget throughout most of the life of the project. While challenges were faced daily in the management process, there was no way to quantitatively assess the impact in a timely manner. By the time a schedule slip or an overrun was forecast, it was too late to do anything to minimize its impact. The result was shocking surprises.

This scenario occurred often enough that there was a heightened awareness of the technical, schedule and cost risk associated with projects. Because of this risk, many organizations reacted by creating better management systems. These systems provided the capability of integrating all of the available data into a cohesive form so that better visibility would result. One of the greatest challenges for these systems was timeliness. If information were not available until after the fact, all that would be accomplished from its use was a well documented history of what went wrong rather than an effective tool for management during the life of the project. This improved visibility must allow for earlier identification of trends so that situations like the one pictured in Figure 1-1 can be prevented.

Most projects develop a time phased plan to accomplish the work. This resembles an S-curve shape. In the early stages, staffing and progress may be slow. In the middle part of the curve, both staffing and progress should be at their peak. At the end of the curve, progress slows while actual staffing may still be at peak or near-peak levels. The implications are obvious: identify and address the problems earlier in the project life and there is a much greater chance of avoiding schedule slips and large cost overruns. Early in the project, it takes very few additional resources to accelerate and resolve variant conditions. At the peak of the project activity, it takes enormous resources just to stay even with the progress curve, making catch-up very difficult. At the end of a project, even great cost expenditures may do little to accelerate technical and schedule progress. Improved early visibility is a primary objective of any project management system.

The Performance-Oriented Approach

Every company has some sort of tracking system to indicate how it is performing. Unfortunately, in many cases, the tracking may have been no more sophisticated than what is shown in Figure 1-2, Budget Plan versus Actual Cost. This was the traditional approach used for many years in companies and is still used in too many organizations.

Actual costs are collected and compared with budgeted costs. This is done in the only common denominator available for resources - dollars in the U.S., Canada, and Australia, or the corresponding local currency in other countries. Does this approach provide improved visibility?

A good system must provide status and, therefore, the necessary visibility into progress. The graph shown in Figure 1-2 at least allows comparison of expenditures with what was planned to be spent. However, there is no assurance that project status is known. Actual cost to date is higher than planned, but does that indicate a cost overrun or is the project ahead of schedule? This situation is shown in Figure 1-3.
A budget versus actual comparison is shown in Figure 1-4. This may appear to indicate that a cost underrun is occurring. However, there is no basis for projecting what status will be at project completion. It may be that the project is incurring a cost underrun, but it may also be that the project is behind schedule and future expenditures will accelerate significantly. This is shown in Figure 1-5.

What is missing from the comparison shown in Figures 1-4 and 1-5? There is no measure of what has actually been accomplished for what has been spent. The fact that money was being spent slower than planned could mean that there would be a cost underrun. It could just as easily mean that the project is behind schedule, or both, or neither.

The key to knowing what the true progress and status actually are requires the addition of a third line to the curve that reflects the dollar value for the work that has been completed.

This third line results from a "performance-oriented" approach. This approach shifts the emphasis from expenditures to work accomplishment. The project objective should be to accomplish all of the work rather than to spend all of the money.

When using a performance oriented approach, work scope and associated responsibilities must be defined in the initial planning phase of the project. This is a far better approach than defining responsibility in some form of finger-pointing exercise of guilt determination after a crisis occurs. It allows the person responsible for an emerging variance to take action before it becomes a problem. The entire organization benefits from this approach. If action cannot be taken in time to entirely avoid a problem, at least the impact can be accurately assessed if an objective method of measuring progress were used. By setting variance standards or "thresholds", the system can be used as a high level Management by Exception indicator. A result is the ability to develop improved forecasts of technical performance, scheduled completion, and final cost earlier in the project. The third line that represents work accomplishment has been added to Figure 1-6.

Now there is a completely different picture of the project status. This graphic depicts the value of the work scheduled to be accomplished, the value of the work accomplished, and how much the accomplished work actually cost. Actual costs to date are still below the budget line, but the value of work accomplished is even less. In other words, cost is not underrunning, but in fact is overrunning relative to the value of the work accomplished. Similarly, a behind schedule condition is apparent. The various methods for measuring the accomplishment of work will be presented in later chapters of this text.
but the important point is that it can be measured and compared with an approved plan.

![Graph](image1.png)

With this type of information, it is possible to project schedule slippage and cost overrun in early stages of the effort. This early warning feature is one of the most important advantages of including a measure of work accomplished. Figure 1-7 illustrates how these projections might be represented.

![Graph](image2.png)

Summary Implementation Concerns

The earned value management process concepts are appropriate in any single project or multi-project environment. On any type of project in any industry, regardless of how small it is, a project must be effectively defined to be effectively accomplished. A project cannot be completed if its scope is not understood. Individuals or organizations must be identified with responsibility for completing the work, and a time frame must be established for accomplishing that work. Budgets and other resources that are allocated to the project need to be identified. In other words, a plan for accomplishing the work is needed. Then progress must be measured against that plan. When variances are identified, corrective action should be identified, evaluated, and implemented in the most cost effective manner. These are standard techniques that apply in any situation.

Experience shows small, short duration projects are often managed far worse than the large projects that have high visibility. Because small projects are considered less significant towards the overall profit picture, they are sometimes overlooked with very unfavorable results. When small projects ignore basic management concepts, they commonly miss their budgets by 100 to 300 percent. The accumulation of absolute dollars may be more than a large project that misses its budget by 10 percent. The point is that the summation of many poorly managed small projects could exceed the impact of a large project.

A convenient aspect of the performance oriented approach is that it works in all environments including research and development, manufacturing, testing, construction, procurement, software development, and design. It also works on all types of contracts, regardless of whether they are firm fixed price, cost plus, or some other type between these two extremes. However, these factors play an important part in deciding on the level of detailed implementation to be used.

Factors Affecting System Implementation Detail

Among the factors that will impact the selection of project controls for a particular application, are the following:

- Project size and duration.
- Technical, schedule and cost risk.
- Project contract environment.
- Management involvement level.

The size and duration of a project are critical considerations when making key decisions on desired management system characteristics.
Because of the complexity of long duration, high cost projects, it is not surprising when it takes six months to develop a detailed plan for accomplishing the project objectives. Smaller projects often do not have a total of six months duration. This does not suggest that the smaller project needs no plan, but rather that it will have a less detailed plan featuring the same general requirements. Similarly, it will not make sense to set up an elaborate monthly reporting scheme with variance analysis reports and corrective action plans since the project will be completed before such a program can even be properly established. Variances still need to be identified and actions taken to correct them, but it will be a far less formal process, probably involving little documentation.

Risk is another important consideration and relates to maturity of the technology involved. If the project were the tenth in a long series of similar products or services, some simple indicators of progress over time may be all that is required. But if it were the development of a new technology, greater detail will be needed for monitoring and managing progress against the goal.

The project contract environment may impact the emphasis of controls. On a firm fixed price contract, cost monitoring and evaluation is typically not emphasized by the customer. However, the contractor will be very cost conscious, since it is responsible for any overruns when this contract type is used. From a customer’s perspective, technical and schedule considerations are also very important for firm fixed price contracts with its support contractors, especially on a multiple contractor program as the interfaces between contractors and projects must be managed. Productivity may still be a concern since it will relate to whether the schedule can be met. In a cost reimbursable environment, cost controls are a paramount consideration since the contractor can maximize income by increasing the hours required to complete the work. The level of detail for cost and schedule control systems will vary in detail accordingly.

The level of management involvement is another contributing factor to decisions regarding implementation detail. In many cases, both owner/customer and contractor will have their own systems for determining project status. The contractor responsible for accomplishing the work will need a detailed system. However, the owner/customer should need a far less involved reporting system and could track progress on a higher level. There are exceptions to this as well. If the owner/customer were hiring the labor for the project and operating in a hands-on management situation, then detailed controls may be needed in the owner’s/customer’s organization.

Common sense and reason must be used when developing and implementing Earned Value Management Systems. Implementing systems at too low a level of detail and with unnecessary complexity has probably caused nearly as many problems as having no system at all. While that may be a slight exaggeration to make a point, the objective of improved visibility can be clouded just as easily by too much data (and not enough information) as it can by lacking enough input.

Earned Value Management System Recognition

The techniques developed and explained throughout this text were implemented widely only after it became apparent that they were necessary. They have not always been enthusiastically embraced by all project participants for various reasons. Some do not want extra visibility into the status of their work if that same information is in the hands of their boss and/or their customer. Typically, managers prefer to attempt resolution of problems before they are discovered by others. While this is understandable from a human nature standpoint, it is entirely unacceptable from a project manager’s viewpoint. If problems are hidden and not satisfactorily resolved, they will later have increasingly substantial impacts to project cost and schedule. It is essential that the project manager has the information and tools to assess status accurately, allowing more rapid, effective management decisions.

The Earned Value Management Process

Successful management of a project involves many concepts and implementation concerns. A project is any endeavor that has a well understood statement of work and optimistic, yet achievable, schedule and cost targets. An Earned Value
Management System is a tool set used to facilitate management of a project. There are many considerations in this complex discipline. A series of flowcharts are used throughout the text to exhibit how the various chapters interrelate.

The master flowchart is shown in Figure 1-8, “Earned Value Project Management: The Process”. This chart is repeated at the beginning of each chapter to show where that chapter fits in the overall process.

The fundamental concept of this entire book is that the earned value management process should be logical, well-defined, and integrate all of the pertinent information relating to a project’s status into a comprehensive picture. Every organization implements many of the concepts; few of them integrate those concepts into a unified status. That is the primary challenge: to use all of the tools in the tool box in a coordinated manner so that they meet the objective of improved project visibility, allowing earlier management decisions based on accurate information. This provides a project manager the best opportunity to meet project schedule and cost objectives while achieving the technical requirements.

The following is an overview of the process steps in Figure 1-8.

The Process Steps

Step 1 – Project Objectives

The first step in the process is definition of the project objectives. These objectives include a general description of the technical requirements of the project, its budget, and the time frame for the work to be completed. A targeted start date and a completion date are included in this description. There may even be some guidance provided as to whether this is a technical, schedule and/or cost critical project. These can be critical pieces of information: as an example, at one of the major auto manufacturers a project to design a new bumper system was being initiated. The time for this product to reach the market was critical, with a goal of eight and a half months. However, the contractor’s project manager assumed that the project was more cost critical than schedule critical. This resulted in the project plan being stretched to 18 months to lower the peak cost requirements.

When the owners and customers reviewed the contractor’s plan, they realized that the primary objectives had not been explained clearly enough. The contractor was sent back to completely redo the plan to support the eight and a half-month requirement. If this project had been managed to the 18-month plan, it would have lost much of its commercial appeal.

The project plan is the set of documentation and directives that formalize the entire management process described in this text, including project objectives, general scope, project organization, desired schedule/cost goals, and a description of management systems and procedures to be used in completing the project. The project plan reflects the project specific internal as well as customer management, reporting, and analysis requirements. The approach used to code and organize the project data is an important up front activity to establish a standard approach to integrate the technical, schedule, cost, and risk data to generate reliable information for effective management, reporting, and analysis for the life of the project.

Step 2 – Work Scope Definition, Risk Assessment and Management

Once the project objectives have been defined, the next function that must be fulfilled is to delineate, capture, and define the entire scope of the project. This is the best opportunity to assure understanding among the various project participants. It also is the best chance to avoid later nightmares with numerous scope changes and possible litigation. The work breakdown structure (WBS) and work breakdown structure dictionary are the tools used to segregate the work into manageable components and to define each component.

A risk assessment of the technical goals is an important part of this process. Risks are identified and mitigation plans are developed. After the organization is assigned in Step 3, additional risks may be identified and the risk plans updated.

Step 3 – Responsibility Assignment, Work Teams

Once the scope is crisply defined, the next step is to document who is responsible for the work. Each component of work defined in the work breakdown structure will have one individual assigned who will
be responsible for the scope, schedule and budget for that work.

It takes an entire project team working together to make the project a success, but only a single individual to cause it to fail. This explains some of the reason for the growing popularity of work teams that help break down the traditional barriers between functional work areas (i.e. departments which can also include subcontractors) and encourage a team spirit.

Work teams are composed of the functional elements necessary to develop or produce the end product. This work team structure has advantages in that fewer management accounts are needed, there is improved communication and efficiency, and potential risks often are surfaced earlier.

Step 4 – Planning

Once the work definition and organizational concerns have been addressed, the particulars of the earned value management process must be developed. These include the functions of scheduling, estimating, budgeting, and performance measurement. These elements must all be performed and integrated for the baseline plan to be developed.

Step 5 – Planning and Scheduling

The scheduling process is defined as what must be done, and when it must be done, to accomplish the project objectives on time.

Step 6 – Estimating

The estimating process is defined as a forecast of how much it will cost to perform the work.
Step 7 – Definition of Earned Value and Earned Value Techniques

Measuring performance against the baseline plan is accomplished through the use of earned value techniques, which is the key concept of the entire earned value management process. While this definition has been given earlier, it is important enough to repeat here. It provides a critical element of information when project status is assessed by providing insight into what has actually been accomplished compared to the cost of performing that work. What has been accomplished can also be compared with what was planned to be accomplished to allow an accurate picture of the current cost and schedule position.

Earned value is determined through numerous techniques. The techniques selected for a project will depend on each application, but objective guidelines are available to help the selection process.

Step 8 – Schedule and Cost Risk Assessment

A topic of growing importance is that of risk assessment. This earned value management process includes three components: technical risk, schedule risk, and cost risk. Each of these has its own considerations and impacts. Like the overall earned value management process, these are also interrelated. There has been some tendency over the years for managers to ignore the possibilities of identifying and especially quantifying risk because the results may be disconcerting. However, ignoring risk does not lessen its impact, and will most likely increase its effects. As profit margins become slimmer in a highly competitive environment, the topic of risk assessment must be addressed.

Project risk management is an ongoing process and is addressed in several chapters. Risk intersects with the Earned Value Management System in numerous ways: schedule risk analysis and assessment (Chapter 17), development of estimates to perform the work scope (Chapter 19), budgeting the technical scope (Chapter 23), management reserve establishment (Chapter 23), estimates at completion (Chapter 25), and variance analysis (Chapter 26).

Step 9 – Integrated Baseline Plan and Work Authorization Development

Next we come to the center of the flowchart for a concept that is central to the overall process: performance measurement baseline development. The performance measurement baseline is the official, documented plan that shows in detail how the project objectives are to be achieved. All of the activities described thus far and the processes displayed on the Figure 1-8 flowchart are needed to achieve a well-planned performance measurement baseline.

At the completion of this step, the technical, schedule, and budget baselines have been established and integrated; the schedule reflects the time frame where all of the detailed work scope is planned to be performed and the budgets are time phased based on the schedule requirements. The work is authorized to the responsible manager and the technical work commences.

Subcontract management is a critical element for many projects. The subcontractor’s technical, schedule, and budget baseline must be integrated with the prime contractor’s baseline. Since the integrated baseline must include this element, a separate chapter on subcontract management (Chapter 28), is included in this step.

Step 10 – Establishing the Baseline Plan, Measuring Progress

At this point, there is a shift from the planning phase of baseline establishment to the control phase of the earned value management process. Once the performance measurement baseline has been established, the main concern from that point on is the determination of progress.

Progress is measured using the same earned value techniques that were established as part of the planning process. The techniques used when the performance measurement baseline (PMB) was established must be applied consistently when progress is determined. Progress is compared with the plan, and this comparison, in turn, provides the schedule variance.

Step 11 – Collecting Actual Costs

All projects will have a system for collection of actual costs. Regardless of how unsophisticated a system may be this component must be includ-
ed. The challenge in this area is to define account structures that can be used for consistently comparing budgets, actuals, and performance. This could mean modification to existing accounting structures. Actual costs are necessary so that they can be compared with progress, and this comparison, in turn, provides the cost variance.

Step 12 – Performance Measurement Calculations

After progress is measured against the plan and the actual cost is entered, the three points necessary for data analyses are available. There are many calculations that aid in assessing the project status and assist the manager in targeting problem areas for corrective action. These calculations also assist in the Estimate at Completion and Variance Analysis reporting.

Step 13 – Estimate at Completion and Schedule Forecasting

Organizations are very concerned with bottom line performance. One of the essential pieces of corollary information needed to evaluate an ongoing project is, “When is it going to finish and what is it finally going to cost?” This answer will be used for many purposes, ranging from reward of project participants with better positions on new projects to project cancellation. The “Estimate at Completion” is so important that it can become a highly political number. A well-defined Earned Value Management System will have objective means of determining estimates at completion to improve their accuracy even in the early stages of a project. This can only be achieved with defined performance factors that provide an accurate picture of what has happened to date and what is forecast to happen.

Step 14 – Variance Analysis and Corrective Action

Variance analysis and corrective action are very important to the overall process. Much time and effort are invested in baseline establishment, and now the baseline information can be used as a basis for determining the course of the project. The tools defined in the previous two Steps directly feed variance analysis and corrective action. By comparing earned value to budget, schedule variances can be determined. By comparing earned value to actual cost, cost variances can be determined. The second element, corrective action, is a critical part of the control phase. At this point in the process, there is a strong basis for determining the project’s true position versus the approved plan so that exceptions can be addressed. The carefully defined system will provide immediate feedback as to whether the corrective action was successful.

Step 15 – Baseline Revisions and Change Control

An essential aspect of the earned value management process is managing change. After all of the effort that goes into developing the baseline plan and determining current status, it is always a disruption to change that plan. Nevertheless, changes are a part of every project and must be addressed as to how they will be reviewed, approved, and incorporated into the plan. Procedures are required to manage the change control process or, over time, the project’s reports will relate less and less to the current scope, schedule, and budget as well as the true status. One guideline stipulates that as much attention is needed for processing baseline changes as was used in developing the original baseline plan.

Step 16 – Implementation of the Project Management Process

This final step provides information useful for implementation of the Project Management process. Topics such as system design, development of the system description and supporting procedures, flowcharting and storyboarding, defining software requirements, and system training are discussed in this chapter.

Conclusion

A project is any endeavor that has a scope of work and optimistic yet achievable schedule and cost targets. A project is typically managed by a single individual known as a project manager, who must be able to coordinate a multi-functional team towards the achievement of all of the project objectives. One of the greatest needs of the project manager is accurate, reliable, and timely information to enable effective management decisions. The information needs to include a valid assessment of project progress and status. Projects were
historically monitored by comparing planned expenditures against actual expenditures.

This approach lacks the most important element of status: a measure of work accomplished. This shortcoming can be overcome by including a third data element that determines an objective value of work completed. This is known as the performance oriented approach. The performance oriented approach allows early identification of trends that indicate if a project’s objectives are in jeopardy. This “early warning system” allows a timely response on the part of management to mitigate unfavorable outcomes by making informed decisions.

It is important that the tradeoff between adequate project status visibility and excessive data collection be recognized and addressed. This is accomplished by setting an appropriate level of detail in the implementation process. Factors that affect level of detail include project size and duration, risk (technical, schedule and cost), type of contract, and desired level of management involvement.

The entire process of managing projects must be a logical one. Each of the steps of the earned value management process is illustrated by the flowchart in Figure 1-8 and will be discussed in detail in subsequent chapters.

Review Questions

1-1. Explain the difference between a project and a program.

1-2. What aspects of a project are managed during the controlling phase of earned value management?

1-3. How is a project organized differently from a functional organization?

1-4. What are some frequent causes of project delays?

1-5. Why is a comparison of actual costs to date versus budgeted costs not adequate from an earned value management standpoint?

1-6. List at least three factors that will affect the level of detail appropriate for implementation of earned value on a project.

True or False

1-7. The earned value management process is only applicable for large projects.

1-8. The fact that more money has been spent at a point in time than was planned to be spent means that an overrun in final cost is indicated.

1-9. A program may be made up of multiple projects.

1-10. Performance measurement can be successfully applied in engineering, construction, manufacturing, and software development applications, among others.

1-11. Using a measure of performance allows earlier indication of potential increases in final cost.

1-12. From the customer’s viewpoint, a firm fixed price contract suggests the need for tight cost controls.
budgeted cost of work remaining (BCWR) 479
budget plan. See performance measurement baseline (PMB)

C
cash flow 464
change control 511, 513
and the PMB 514
program 513
changes. See also change control
baseline 515
causes of 511
directed 545
documenting 272
duration
future activity 271
in progress activity 271
external 511
formal reprogramming 546
how to control 513
internal replanning 511, 520, 546
schedule 269–274
schedule baseline 244, 274
stop work order 521
subcontract 544
tracking 516
tracking original estimate 386
types of 511
charge number 449
and work authorization 453
commitments 464
time lag 464
constraint. See directed date
contract budget base (CBB) 449, 450
log 516
Contract Performance Report (CPR) 466, 484, 486, 488, 503, 517, 531
cost baseline. See performance measurement baseline (PMB)
cost elements 371, 461
cost performance index (CPI)
combined with SPI 484
efficiency concept 478
performance concept 478
cost risk
analysis output 326
assessment 375–377
reevaluation 388
cost variance (CV) 407, 474
critical path 149, 153
characteristics 157
length index (CPLI) 211
near 153
test 211
critical path length index (CPLI) 211
critical path method (CPM) 130, 149
completion estimate validity 319
estimate validity 317
fundamentals 147
risk approach 314
schedule traceability 239
current
schedule 245, 269, 271, 274
versus baseline 284

direct costs 459, 462
directed changes 545
directed date 156, 203, 209, 293
hard constraint 295
imposed 293
not earlier than 293
not later than 293
risk analysis impact 321
soft constraint 295
discrete effort 425, 450
0/100 technique 430
50/50 technique 429
equivalent units technique 432
incremental milestone technique 428
milestone 426
percent complete technique 434
units complete technique 430
distributed budget 450
driving path 158
early finish (EF) 150
early start (ES) 150
earned value (EV). See budgeted cost for work performed (BCWP)
earned value management
benefits 408
defined 27
fundamentals 30, 403, 408
illustrated (the brick wall) 413–419
implementation
 concerns 32
 level of detail 28, 32
process 33–37, 408
relationship to risk management 36, 75
schedule applications in 347
schedule contract requirements 350
earned value management system
 continuous improvement 565
 defined 27
 description 347, 561
design 560
dollar values for compliance 533
guidelines 119, 347, 350, 531, 533
implementation 559
 process 566
 schedule 567
interface with accounting system 462
procedures 566
storyboard 564
training material 566
earned value techniques
 0/100 430
 50/50 429
 apportioned effort 435
 consistency with baseline 427
discrete effort 425
equivalent units 432
functions 423
incremental milestone 428
level of effort (LOE) 436
milestone 426
other 436
percent complete 434
units complete 430
efficiency variance 487
EIA-748 119, 347, 531
escalation factors 381, 382
estimate
 basis for BCWS 374
 basis for EAC 374
 changes 386
 compared to actual
 variance sources 386
 cost flow development 381
defaults 379
development inputs 378
documenting assumptions 375
escalation factors 381, 382
fast track impact 374
fundamentals 369
guidelines 371, 379
input sources 379
level of detail 380
manufacturing costs 382
method
 analogy 378
 engineering build-up 378
 parametric 378
operating costs 382
prerequisites 371
process 369, 376
review
 external 375
 other factors 375
team 375
role of WBS 371
software 383
templates 372
traceability 386
type
 conceptual 373
 definitive 374
detailed 374
 preliminary 373
estimate at completion (EAC) 464
 comprehensive 477
detailed 477
development 476
 estimate as basis for 374
 independent 479
 justification 506
 range of 481
estimated ACWP 469
estimated completion date (ECD) 482
estimate to complete (ETC) 464, 477
F
fast track 230, 322, 374
finish-to-finish (FF) 140
finish-to-start (FS) 139
float 147, 153
 analysis 283, 288
 high 209
 negative 209, 281
 monitoring 288
 resolving 281, 286
 status impact 256
forecast schedule. See current schedule
formal reprogramming 546
forward pass 150, 151
fourteen point schedule health check 207
 activities with lags 208
 activities with leads 208
 baseline execution index (BEI) 212
 correlation with GASP 212
critical path length index (CPLI) 211
critical path test 211
hard constraints 209
high duration 210
high float 209
invalid dates 210
missed activities 211
missing logic 207
negative float 209
no assigned resources 210
relationship types 208
free float (FF) 154
freeze period 448
funding 450
analysis 464
profile 464
funds versus budget 464

G
GAO Best Scheduling Practices 117, 237, 309
GAO Cost Estimating and Assessment Guide 378
Generally Accepted Scheduling Principles (GASP) 116, 199, 212, 237, 349

H
hammock 195
hard date constraints 209
high duration 210

I
incremental milestone. See also milestone
independent estimate at completion (IEAC) 479
independent estimated completion date (IECD) 482
indirect costs 381, 459, 462, 465
indirect pools 462
integrated master plan (IMP) 191, 237
accomplishment 193
coding 193
criteria 193
defined 193
event 193
IMS and WBS cross reference 193
integrated master schedule (IMS) 191, 192. See also schedule
coding 193, 238, 352
IMP and WBS cross reference 193
Integrated Master Schedule (IMS) Data Item Description DI-MGMT-81650 201, 149, 239, 309, 347, 352, 486
integrated product team (IPT). See work team
Integrated Program Management Report (IPMR) 149, 201, 239, 309, 347, 352, 466, 484, 488, 503, 517, 531
formats 486
internal replanning 520, 546

L
lag 199

late finish (LF) 150
late start (LS) 150
latest revised estimate 476
lead 199
learning curves 384
cumulative average method 384
impacts 385
selecting method to use 385
slope 384, 385
unit method 384
unit values 385
leveled finish 180
leveled start 180
level of effort (LOE) 436, 450
activities 303
logic network. See schedule network logs 450, 516

M
management reserve (MR) 450
log 516
subcontract 539
milestone 137, 237, 448, 537
and work measurement 426
and work package progress 426
definition 426
examples 427
monte carlo 325, 329

N
negative float. See float
nonrecurring costs 383

O
organization breakdown structure (OBS) and work authorization 452
chart definition 79
intersection with WBS 79
types 79
out of sequence logic 258
progress override 258, 261
retained logic 258, 259
total float impact 262
over target baseline (OTB) 244, 450, 546
over target schedule (OTS) 231, 244, 287, 546

P
percent complete
earned value technique 434
physical 255, 256
project 482
schedule 255, 256
percent spent 482
performance indices 478
performance measurement baseline (PMB) 423, 445, 448, 450
changes 511, 514, 516
development steps 446
establishment timing 451
structure 449
performance measurement calculations. See analysis formulas
planned value (PV). See budgeted cost for work scheduled (BCWS)
Planning and Scheduling Excellence Guide (PASEG) 116
planning package 425
converted to work packages 271, 447
precedence diagramming method (PDM) 130, 137
price variance (PV) 486
Program Evaluation and Review Technique (PERT) 326
progress override 258, 261
project characteristics of successful 28
defined 27
objectives defined 39, 40
percent complete 482
percent spent 482
scheduling 121
versus program 27
Q
quantifiable backup data 205, 435, 437
R
rate variance 487
recurring costs 383
remaining duration 253, 256
resource availability constraint 178
curves 180, 181
eyearly start curve 180
float 181
late start curve 180
leveled dates 180
leveled start curve 180
plan 175
profiles 177
reallocations 273
requirements 177
time constraint 178
usage curve 178
resource leveling 203
considerations 179
process 178
resource loading 203
considerations 179
objective 177
process 177
requirement 210
responsibility assignment matrix (RAM) 79, 82, 451
retained logic 258
revisions. See changes
risk. See also schedule risk assessment (SRA)
analysis 313
output 325
path duration 316
pitfalls 323
and variance thresholds 502
assessment 313
benefits 313
cost 375–377
developing useful mitigation strategies 313
implementation 324, 329
outputs 325
tools 326
attributes 68
classification 68
contract type 533
cost analysis output 326
cumulative likelihood curves 317
cumulative probabilities 318
defined 67
identification 70
management fundamentals 67
plan 69, 70
process 69
relationship to earned value management 36, 75
strategy 74
monte carlo 329
PERT 326
qualitative 73
quantitative 73
schedule 205, 311
analysis output 325
bias 320
directed dates impact on 321
fast track impact on 322
subcontract 533
threat or opportunity 67
rolling wave planning 244, 271, 274, 425, 447
root cause analysis. See also variance analysis report (VAR)
cost impact assessment 487
float deterioration 284
schedule impact assessment 286, 487
S
schedule and earned value management 347
and work authorization (period of performance) 452
approach aggressive 204
conservative 204
organizational 204
Section 6 Conclusion and References

project 205
audit 206
baseline 239, 269, 271, 274
changes 244
establishment process 240
establishment timing 243
basis for BCWP 350
basis for BCWS/PMB 243, 349
calendar 304
changes 269–274
documenting 272
duration 271
current 245, 269, 271, 274
current status 245, 257
definition 123
development data requirements 124
driving path 158
earned value contract requirements 350
fast tracking 230
focused work 230
fourteen point health check 207
fundamentals 121
integrating subcontract 536
level of detail 205, 206, 243
margin 201, 287
activity method 202
baseline finish variance method 203
gap method 203
lag method 203
over target 231, 244, 287, 546
percent complete 255, 256
physical percent complete 255, 256
purpose 125
quality 206
reconciliation
progress and performance 350
time phased budgets 349
reserve 201
risk 205, 311. See also schedule risk assessment (SRA)
analysis output 325
and cost overrun 314
and early start scheduling 323
and late start scheduling 322
at path convergence 320
bias 320
CPM approach 314
directed dates impact on 321
duration validity 322
fast track impact on 322
highest path 319
merge bias at path convergence 320
other issues 326
path duration 316
probabilistic approach 314
routine updates 269, 274
status 238, 245, 272
considerations 258
data 253
float analysis 283, 288
streamlining 230
traceability 235
achieving 239
historical 239, 271
horizontal 237, 349
vertical 237, 347
types
bar chart 127
combination chart 128
flow process chart 128
gantt charts 126
line of balance 129
milestone chart 126
modified gantt or milestone chart 128
network diagrams 129
set back chart 129
update process 253, 257
visibility task 200, 201, 296
what if 271, 274
work scope crosscheck 50
schedule network
acceleration 221
other techniques 230
activity relationships 139
analysis 284
backward pass 150
calculated dates 150, 256
calculations 150, 155, 255
coding 193, 238, 352
components 137
CPM analysis technique 147
crashing 221
directed dates 156
display techniques 142
directed dates 156
display techniques 142
forward pass 150
out of sequence logic 258
resource leveled dates 180
resource loading 177
resource loading requirement 210
templates 197, 198
schedule performance index (SPI) 289, 478
and schedule status 483
combined with CPI 484
schedule risk assessment (SRA) 309–331
schedule variance (SV) 289, 407, 474
 converted to time variance 474
dollar versus time 407
slack 147, 153
start-to-finish (SF) 141
start-to-start (SS) 140
stop work order 521
subcontract
 badgeless organization 543
 change control 544
 classification 463
contract type
 cost reimbursable 540
 firm fixed price 540
 selecting 534
 technical services 541
time and materials 541
control accounts
 impacts on 537, 541
data analysis 547
defined 531
directed changes 545
EVMS flowdown requirements 532
 impact on RFP 533
EVMS guideline compliance 548
EVMS reviews 548
EV reporting 549
factoring budget and earned value 542
formal reprogramming 546
integrating
 BCWS/PMB 537
 schedule 536
 WBS 535
inter-divisional work authorization (IDWA) 543
internal replanning 546
major versus non-major 531
management reserve (MR) 539
price versus fee 538
reporting requirements 535
risk 533
schedule milestones 537
surveillance 548
time lag (data) 541
undistributed budget (UB) 539
variance analysis report (VAR) 547
WBS 538
summary activity 196
summary level planning package (SLPP) 448
surveillance 548
T
thresholds 500
time now 253, 255
to complete performance index (TCPI) 479
total allocated budget (TAB) 450
total float (TF) 150, 153
 analysis 283
 and SPI 483
directed date impact 296, 299
out of sequence logic method impact 262
traceability
 baseline 454
 estimate 386
 historical 387
 vertical 387
schedule
 achieving 239
 historical 239, 271
 horizontal 237, 349
 vertical 237, 347
work scope 349
U
undistributed budget (UB) 450
log 516
subcontract 539
usage variance (UV) 486
V
variance
 analysis 499
 at completion 474
cost 407, 474
duration 284
efficiency 487
labor cost 487
material cost 486
price 486
rate 487
schedule 289, 407, 474
schedule converted to time 474
schedule finish 284
schedule start 284
thresholds 500
usage 486
variance analysis report (VAR) 477, 503
 approval 506
 corrective action plan 505
 describing the problem 504
 EAC justification 506
 impact 505
 subcontract 547
variance at completion (VAC) 474
W
what if schedule 271, 274
work-around plan
 strategies 273
work authorization 451, 452
 inter-divisional 543
 requirements 452
work breakdown structure (WBS) 538
ad and work authorization 452
contract 50
defined 41
development considerations 42, 47
dictionary 46, 516
dictionary example 47
examples 42–45
IMP/IMS cross reference 193
integrating subcontract 535
intersection with OBS 79
level of detail 42
role in estimating 371
work scope cross check 50
work definition
process 39
work package 423, 450
characteristics 423
examples 425
level of cost collection 463
work scope
and schedule development 124
and WBS elements 41
and work authorization 452
defined 39
traceability 349
verification 50
work team
advantages 95, 97
alignment examples 98
application examples 100
defined 95
lead role 103
ABOUT THE AUTHORS

Paul F. Bolinger – Paul Bolinger began working on projects during his last tour with the U.S. Navy. In the many years since then he has been involved in proposing, winning, initiating, and managing projects both as an employee of a contractor and as a management and scheduling consultant. Paul has held many positions in project organizations, and has taught project management and scheduling to thousands of clients. His experience includes space systems, aircraft, submarines, surface ships, rotary wing aircraft, electronics, tracked vehicles, and missiles. His B.S. degree in engineering and his MBA put in place a solid foundation of study to which he has added practical experience and additional training.

Christopher Humphreys – Chris Humphreys has focused on management system design by creating flowcharts and their associated narratives, storyboards and the subsequent implementation activities with particular emphasis on scheduling and earned value techniques. He has assisted in the conduct of many Earned Value Management Systems reviews. Chris recently participated in the design and implementation of Earned Value Systems for a number of companies without experience with Earned Value, which resulted in successful Integrated Baseline Reviews. Chris has supported large programs undergoing Government reviews by preparing project personnel to be successful during those reviews. Chris has taught Earned Value for the past four years. He is responsible for managing various H&A customer engagements throughout the lifecycle of the program. Chris earned his Bachelor of Arts at the University of California, Santa Barbara.

Gary C. Humphreys – Gary Humphreys is Chief Executive Officer (CEO) of Humphreys & Associates, Inc. As a consultant, Mr. Humphreys has provided technical support in all phases of project management to clients in the United States, Sweden, Australia, England, Holland, Hong Kong and other countries. As both a Team Member and Review Team Director, he has assisted, evaluated, and directed review teams leading to over 150 successful system acceptances. He has served as chairman of the National Defense Industrial Association (NDIA) Integrated Program Management Division (IPMD), and president and chairman of the board of the Performance Management Association, which became the College of Performance Management (CPM). Mr. Humphreys has been a keynote speaker on a variety of performance measurement related subjects to various Government and industry associations. He has also published several books on the subject of performance measurement and earned value.

Mr. Humphreys is also a recipient of the 1998 David Packard Excellence in Acquisition Award and the Whitey H. Driessnack Award for Outstanding Contributions to the Advancement of Performance Management. Mr. Humphreys is a graduate of the University of California at Berkeley, with a Masters Degree in Business Administration from the University of Southern California.

Hugh A. Langford – Hugh Langford has over forty years of experience in Project Management, Earned Value Management Systems, and test engineering. He holds a B.S. degree in Civil Engineering and a Master of Science degree in Research and Development System Management. He is a graduate of the Armed Forces Staff College, the Industrial College of the Armed Forces, and the USAF F100 Fighter Weapons School. As an EVMS Team Director for the USAF, he led over seventy-five System Validation Reviews throughout the U.S., Canada, and the United Kingdom. He has provided Management Consulting support to the DoD, NASA, DOE, and over 300 companies throughout the U.S., Europe, United Kingdom, Canada, Australia, Singapore, and Hong Kong.

Lynn Sandberg – Lynn Sandberg has forty years of project management experience both in defense corporations and consulting. While at major corporations, she was the Project Controls Manager and then the Earned Value Focal Point to the Government. She was the leader for Validation Reviews and Integrated Baseline Reviews, all with successful results. In both corporate and consulting positions, she has trained well over a thousand control account managers, and other management, in project management and other business topics. Lynn has participated in and led teams in analysis of projects for compli-
ance to the EIA-748 Standard for Earned Value Management Systems, and implementation of corrective actions, to ensure positive outcomes. She has also been the technical writer for several project management publications. Lynn is a graduate of the University of Minnesota with a Bachelor of Arts degree.

Charles H. (Buck) Wilkerson III – Charles “Buck” Wilkerson has over 30 years of project management and Earned Value Management experience in government and industry environments. He has a long history of successfully designing, developing, and implementing project management control systems. He is an expert with a wide variety of project management schedule and cost toolsets and is one of the best in the industry at designing and implementing integrated cost/schedule control systems. He has a unique ability to distill client unique business needs and transform those needs into an effective project controls system that complies with the guidelines in the EIA-748 Standard for Earned Value Management Systems. He also has extensive experience in conducting Integrated Baseline Reviews and preparing all levels of project personnel for compliance reviews. He also excels at developing, implementing, and maintaining complex project schedules and has deep hands-on experience conducting schedule analysis as a member of review teams and in preparation for a customer compliance review. As an experienced trainer, he has developed and delivered numerous program management, scheduling, and EVMS training classes for clients in the U.S. government and contractor sites. He has been a certified trainer for a variety of project management software toolsets. He has trained hundreds of schedulers, CAMs, and other project personnel on how to use software toolsets as well as EVMS processes and procedures.